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ABSTRACT

The increased use of virtual machines in the enterprise environment presents an interesting
new set of challenges for the administrators of today’s information systems. In addition to the
management of the sheer volume of easily-created new data on physical machines, VMs
themselves contain data that is important to the user of the virtual machine. Efficient storage,
transmission, and backup of VM images has become a growing concern. We present IZO, a novel
large-window compression tool inspired by data deduplication algorithms, which provides
significantly faster and better compression than existing large-window compression tools. We
apply this tool to a number of VM management domains, including deep-freeze, backup, and
transmission, to more efficiently store, administer, and move virtual machines.

Introduction

Virtual machines are becoming an increasingly
important tool for reducing costs in enterprise comput-
ing. The ability to generate a machine for a task, and
know it has a clean install of a given OS can be an
invaluable time saver. It provides a degree of separa-
tion that simplifies support (a major cost) as people all
get their “own” machines [26].

A side effect of this, however, is that there can be
many machines created in a very short time frame,
each requiring several gigabytes of storage. While
storage costs are falling, terabytes are not free.

We believe that large-window compression tools
provide much needed relief in this domain, because
they often perform extremely well on large data sets.
Large-window compression has not received much
attention in the past because archiving tasks have tradi-
tionally involved only hundreds of megabytes. More-
over, traditional tools such as gzip perform consistently
well for small and large data sets. However, falling
storage costs and larger storage applications (e.g., vir-
tual machines) have driven archiving to hundreds of
gigabytes or even hundreds of terabytes. Large-win-
dow approaches provide significant additional com-
pression for data sets of these sizes, and complement
small-window compression.

One of the most exciting results of our experi-
ments is that large-window compression does not
impact the compression factor achieved by a small-
window compressor. The combined compression ratio
is close to the product of the individual compression
ratios. In some cases we even noticed small improve-
ments in the compression ratio of gzip when applied to
data that had been processed by our large-window
compression algorithm. Moreover, the total time re-
quired for large-window and small-window compres-
sion combined is often smaller than that of the small-
window compression alone.

We find this property analogous to the way a
suitcase is packed. It is possible to simply stuff all of
one’s clothes into a suitcase, sit on the lid, and zip it
up. However, if the clothes are folded first, and then
compressed, they will fit in a smaller space in less
time. Large-window compression can be thought of as
the folding step, while small-window gzip style com-
pression is the sitting and zipping. Using the term
compression for both techniques can become confus-
ing, so in such cases, we refer to large-window com-
pression as data folding.

In this paper, we present three applications of
large-window compression for the efficient manage-
ment of virtual machines. We also introduce 1ZO, a
novel large-window compression tool using data dedu-
plication, which accomplishes significantly better data
folding than existing large-window compression tools.

The first application is the use of large-window
compression in cases where long-term storage of
“retired”” machines is desired. This is a common case
when a group of machines have been generated for
tasks that are no longer active, but which may become
active again. Examples include yearly activities, or
machines for people who are only present periodically
(e.g., summer students). In this scenario a number of
similar machines are to be placed in “deep freeze.”

The second task is that of distributing machine
images. Core images of machines are often used for
the ‘“base machine” with users having their own
mounted filesystems. The core image is usually main-
tained by experienced IT staff, e.g., ensuring that the
latest security patches and drivers are installed prop-
erly. In a global organization these new images need to
be distributed to remote sites. For example, in the
financial sector it may be necessary to distribute
updated machine images to all bank branches. Unfor-
tunately, these images can be quite large. A problem
that can be compounded by low or moderate Internet
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connectivity for remote sites. We observe that each
image tends to be very similar to the previous one. We
therefore investigate whether a smaller patch file can
be created by calculating the binary delta between
similar virtual machines. We use the series of RedHat
Enterprise Linux installs from version 4 to create a set
of virtual machines from the initial release to updates
1-6 and calculate binary deltas between these ma-
chines.

The last task is in creating regular backups of
these systems. Traditional backup tools need to be
installed on the actual machine and require the ma-
chine to be running during the backup. They are often
specialized on a specific operating system and filesys-
tem. One benefit of these specialized solutions is that
they provide incremental backups: the ability to iden-
tify which files were modified since the last backup, in
order to save storage space on the backup device. This
can be difficult if the virtual machines are running a
variety of (potentially arcane) operating systems or
filesystems. We instead look at creating backups of the
whole virtual machine image, and using large-window
deduplication to identify the changes between differ-
ent revisions of the backup, to achieve the footprint of
incremental backups without specialized knowledge of
the inner workings of these virtual machines.

In all these cases there is considerable redundancy
or duplication of data — for example, files that appear
on multiple filesystems. These duplicates may occur
gigabytes apart in the archive, and thus traditional
streaming short-window compression schemes such as
gzip are unlikely to “see” both duplicates within their
window, and therefore cannot compress them.

We are working on a novel compression tool
called 1ZO (Information Zipping Optimizer), which
was initially targeted at compressing ISO CD images.
1ZO uses data deduplication algorithms to identify and
remove global redundancies. Because large-window
compression tools are expected to be applied to hun-
dreds of gigabytes of data, we desire reasonable mem-
ory requirements and fast data processing. Moreover, a
scriptable interface is important to allow automation of
the different compression scenarios. For 1ZO, the com-
mand line interface has been modeled after tar, provid-
ing intuitive ease-of-use to users that are familiar with
this tool. IZO also provides the same streaming seman-
tics as tar — it requires a set of files or directories as
input, and can stream the compressed output to stdout,
or to a specified archive. 1IZO only removes large-win-
dow redundancies, therefore the output should be
streamed into a short-window compressor of the user’s
choice.

In the remainder of this paper we will examine
some background on the compression and data dedu-
plication approaches used (Section Background), out-
line the scenarios we are examining (Scenarios), pro-
vide a brief tutorial on large-window compression and
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outline our implementation (Tutorial and Implementa-
tion), discuss the experiments and their results (Exper-
iments) before concluding with some thoughts on how
these tools can be extended even further (Conclusions
and Future Work).

Background

Virtual machines are an emerging tool for allow-
ing multiple “guest machines” to be run on a single
piece of hardware. Each guest thinks it has a whole
machine to itself and the host machine juggles re-
sources to support this. A full discussion of the chal-
lenges and opportunities of virtual machines are be-
yond the scope of this paper, but the reader is encour-
aged to consult [19, 28, 21] for a good overview. A
good introduction to the open source virtual machine
monitor Xen can be found in [5, 6] and the commer-
cial product VMWare in [27, 22].

We are working on a novel large-window com-
pression tool called 1ZO. IZO draws on concepts from
existing tools and technologies including tar [7], gzip
[9], rzip [24, 25] and data deduplication [29, 14]. It is
invoked on the command line using parameters identi-
cal to the well-known tar utility to produce an archive
of multiple files or directories.

Large Window Compression

Traditional LZW-style compression techniques
are notoriously poor at handling long-range global
redundancy. This is because they only look for redun-
dancy within a very small input window (32KB for
gzip, and 900K B for bzip2 [20]). To address this short-
coming, rzip [24] was developed to effectively in-
crease this window to 900 MB. Rzip generates a
4-byte hash signature for every offset in the input file
and stores selected hashes as {hash, offset} tuples in a
large hash table. Data at offsets that produce the same
hash signature may be identical. The data is re-read
and a longest-matching byte sequence is calculated. If
a matching byte sequence is found, a redirecting (oft-
set, length) record is written to the rzip file instead of
the duplicate data. This method achieves extremely
high compression ratios, but suffers from two main
drawbacks as described by rzip’s author Andrew
Tridgell in [24]. First, rzip has large memory require-
ments for storing a hash table entry for every offset in
the input file. Second, it cannot operate on input
streams because it requires random access to the input
data to re-read possible matching byte sequences.

Rzip also compresses the deduplicated archive
using bzip2 at the highest compression level. Unfortu-
nately, this step may require significant resources and
time. Lrzip [10] provides an extended version of rzip,
allowing the user to chose between different short-
range compression schemes or to execute rzip’s long-
range compression only. In the experimental evalua-
tion, we compare 1ZO to Irzip, because Irzip allows us to
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assess the benefit of rzip’s long-range compression in
isolation.

Even though 1ZO achieves large-window com-
pression as well, its roots are quite different. It was
inspired by our work on the StorageNet deduplication
filesystem [18, 23]. Data deduplication filesystems are
a recent trend in enterprise class storage systems, such
as NetApp ASIS, DataDomain, Sepaton DeltaStor and
Diligent HyperFactor. 1ZO was created on the insight
that the deduplication algorithms used in these filesys-
tems could provide data compression as a command
line tool similar to tar or gzip as well.

CZIP [13] takes a similar approach, storing com-
pressed data in a single archive file. But it focuses on
efficient transmission of data over a network by main-
taining a “Content-Based Named” CBN dictionary of
chunks, which has to be stored in the archive as well.
CZIP enables Servers to prevent cache-pollution by
using this dictionary to only load a unique instance of
a particular chunk, while clients can decrease network
transmission by re-using already-sent duplicate data
chunks. 1ZO, in contrast, is designed as an offline
compression tool. Creating the smallest possible ar-
chive from its input is its primary goal and thus we
perform optimizations such as discarding the CBN
dictionary, etc. to reduce the total compressed size.
The use of a CBN dictionary also precludes CZIP
from being able to stream both into its compressor and
decompressor. To stream into the compressor, the
CBN dictionary must be written to the end of the ar-
chive; while to stream into the decompressor, the CBN
dictionary must be at beginning of the archive.

Data Deduplication

Data deduplication can eliminate global redun-
dancies across multi-terabyte-scale corpora [11]. Early
deduplication filesystems include Deep Store [30] and
Venti [16], which are also called content-addressable
storage systems.

These systems identify duplicate data when it is
written to the filesystem. They then reference the
existing data instead of storing another copy. Dupli-
cates can be detected on a whole-file level, but current
solutions usually detect sub-file redundancies. This is
done by breaking files into chunks. A chunk signature
is created using cryptographically strong hashing of
the chunk content to avoid collisions. Chunks with the
same hash value are considered duplicate, and only a
single instance is stored. Files are comprised of a list
of unique data chunks and are reconstructed during
read. The list of unique hashes needs to be kept in
memory, to provide fast lookup for newly incoming
data. Therefore, chunk sizes in these systems are gen-
erally large, typically between 4KB and 32KB.

Different methods exist to split the data into
chunks. The chunking method and chunk size strongly
influence the speed of the system and the overall data
compression. A detailed discussion of chunking
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approaches can be found in the data chunking section
below.

Commercially available deduplication products
use a wide variety of chunking approaches. NetApp
ASIS uses a modified version of WAFL to deduplicate
at a 4K fixed-block granularity [8, 12]. Fixed-block
chunking is very fast, but provides comparatively low
folding factors. Data Domain’s Global Compression
uses content-agnostic chunking to produce chunks of
8KB average size [2]. Content-agnostic chunking is
based on a rolling hash function, such as Rabin Fin-
gerprinting [17] and provides better folding factors, but
at the expense of speed. Sepaton’s DeltaStor is content-
aware, with built-in knowledge of common data for-
mats for optimal chunking [3]. This is the slowest
method because data must be interpreted, but can pro-
vide the highest folding factors. HyperFactor, by Dili-
gent, departs from the typical chunking methodology,
and relies instead on using data fingerprints to identify
similar data objects, and stores the differences between
them [1]. Computing the differences requires a read of
the most-similar identified data object, but because
chunk hashes are neither computed nor compared, this
technique does not suffer from the possibility of hash
collisions.

Storing virtual machines on a deduplication
filesystem would provide similar benefits as the ones
we hope to accomplish in our scenarios. Moreover,
live filesystems allow virtual machines to be dedupli-
cated even when they are running. However, these
benefits are lost when a set of machines is moved to a
non-deduplication storage device, such as tape or a
different disk array. We are interested in evaluating the
usefulness of a simple deduplication compression tool
that can be used on a standard desktop and doesn’t
require the acquisition of specialized storage hard-
ware. 1ZO bridges this gap by providing a deduplica-
tion archive, which can be stored on any storage
device without loss of compression.

Binary Diff

It is curious to note that the algorithms employed
by rzip and data deduplication can also be used to cal-
culate the differences between two files. The differ-
ence is defined by all data in the second file that is
found to be non-duplicate with regards to the first one.
Binary deltas between two versions of an executable
are useful to create patch files that are significantly
smaller than the new executable. Our VM distribution
scenario in Section ‘““Scenarios, VM Distribution”
evaluates the ability of 1ZO to create binary diffs. The
equivalent tool from the rzip family is xdelta [24, 4].

Scenarios

In all the following scenarios we are trying to put
ourselves in the “mindset” of a systems administrator
for a virtual machine farm. We want approaches that
reduce the cost/effort of maintaining such systems, are
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simple enough to be useful within seconds of reading
the man page, are scriptable, and hopefully work well
with existing infrastructure. To this end we use gzip for
small-window compression, and 1ZO with its “tar”-
like syntax for large-window. As such it can be used
as simply as
izo -cv /mnt/vmimages | \
gzip > freeze.igz

Deep Freeze

A not uncommon scenario with virtual machine
management is to have a number of machines that are
no longer being used. However, the data on them is
too valuable to just throw away. We’ve begun to ar-
chive working demo systems at the end of project life
cycles as virtual machines. These systems provide
self-contained “‘time capsules” of code, libraries and
configuration that can be “revived” at a later time.

The desire is to take a set of similar machines
and deep freeze them — that is compress the set as
much as possible, and then place them on low-cost
storage (potentially near or off line). If they are ever
needed again it is understood that it may take a day to
restore them, and the move to deep freeze can be done
in batch during “off time.” If there are a number of
machines that need to be frozen they may be done in
batches, or they may trickle out (e.g., as summer stu-
dents leave). Thus we would also like to be able to
“append” new machines to the end of a freeze.

As a proxy for this, we use images of machines
from a set of computers generously provided by a
local after school program. The 11 machines all
started life with similar installs of Windows XP, but
have “evolved” over the course of a year of student
use. We look at this set for examples of how a group
of similar but not identical machines can be deep
frozen together.

Deep freeze is most effective if the machines in
each freeze set are reasonably similar. They should,
for example, have the same underlying operating sys-
tem and preferably be used for similar tasks. Fortu-
nately this is usually the case in enterprises.

VM Distribution

One common use of virtual machines is to pro-
vide many employees with their “own” machines, on
which their home directory is mounted but on which
they have limited permissions to modify the rest of
base machine. This simplifies the support task, as a
central IT department can create and test the image
which is then distributed. For global organizations this
last step is non-trivial. If the images are generated in
South East Asia, the testing is done in North America,
and the images are deployed to company branches
across Europe, sending multi-gigabyte images around
can become quite cumbersome — especially when net-
work connectivity to some sites is slower than may be
hoped.
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We find, however, that the differences between
these base images can be quite small. Using the origi-
nal image as a “template,” the updates then become
“deltas.” We use RedHat Enterprise Linux 4 WS as
our test image for this scenario. As a framework, we
used Xen on a Fedora Core 7 machine, but since we
were using hardware virtualization from the processor
and raw files for disk images the same results can be
achieved using other VM solutions. We installed each
operating system on a 10 GB partition answering
“yes” to all questions, starting with the base
RHELA4 and then doing the same for the updates ul
through u6. We then create the binary delta between
the initial RHEL4 image and the RHEL4U1 image;
the RHEL4UI image and the RHEL4U2 image; and
SO on.

The goal then is to create incremental patches
that can be as small as possible, reducing the “cost”
of an update and thus encouraging shorter and less
cumbersome update cycles — critical in the case of
security or machine stability issue patches.

Backup

Virtual machines give tremendous freedom to IT
professionals. With the emergence of full hardware
virtual machine support in both Intel and AMD chip
sets, it is possible for users to run whatever operating
system and programs best support their tasks. This
freedom comes at a price. Inevitably someone will be
running OS/2 Warp with the HPFS filesystem.

Despite the wide variety of operating systems,
versions, usage scenarios, etc. there is still an expecta-
tion that system administrators will provide basic sup-
port (such as system backup and recovery). Support
for modern backup clients in OS/2 Warp is unfortu-
nately limited, and even mounting the HPFS filesys-
tem can prove problematic. We thus need a way to
backup such machines and not rely on the users to
maintain copies of important files.

This is facilitated by the proliferation of snapshot
functionality — either at the storage level in NAS/SAN
products, or in software such as the LVM system.
These facilities allow a snapshot to be taken of a run-
ning system which can then be saved as a backup.

This snapshot is essentially a disk image file,
often many gigabytes large. Keeping a snapshot from
every week is an expensive proposition. What is
desired is the ability to do a binary “diff” of each
image and store only the changes. This is thus similar
to the former task, although the data evolution is quite
different. Additionally, real savings can be obtained by
performing snapshots of a number of machines (as per
the “deep freeze” scenario).

We will look at backing up a single user’s
machine every week for a number of weeks. The
backups are full filesystem images of a machine run-
ning Windows XP, including all data, application, and
system files. The machine is one of the authors’ actual
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workstations, used every day during the work week
for email, office applications, and software develop-
ment, and thus is typical of the kind of machine one
might find in a corporate environment.

We repeat this experiment with a virtual machine
running OS/2 Warp 4. This machine is not actively
being used, but different snapshots are taken after
modifying the filesystem by adding and removing
files.

Tutorial and Implementation

Large-window compression/deduplication is a
fairly new technology to most IT professionals, so we
will review the basic idea behind it, and the choices
we made for our 1ZO implementation. For those
already familiar with large-window compression (and/
or not interested in the implementation details) skip-
ping to the next Section might be advisable.

IZO operates like an archiver with built-in data
deduplication facilities. To perform data deduplication
and create archives, IZO implements three core com-
ponents: a chunking algorithm, a chunk hash table,
and an archive format generator.

Data Chunking

As described earlier, the core technology choice
in a deduplication implementation is the method by
which the data is chunked. The major chunk genera-
tion schemes are as follows:

Fixed-Size Chunking: Fixed-size chunking breaks
data into chunks of a specific size. It is very simple,
fast, and the resulting chunk size can be selected to
optimally align with the physical block size of the
underlying storage device to maximize storage utiliza-
tion. However, a major drawback of fixed-sized
chunking is that shifting the data by some offset may
result in completely different chunks. This issue is
illustrated in Figure 1.

[this is hon fixed-bllock chunkeIrs break aInd store dI ata ]

[fixed-bloclk chunkersI break andI store datIa like thiI s ]
0 10 20 30 40 50

Figure 1: Fixed-size chunking.

Content-Aware Chunking: This method, illus-
trated in Figure 2, generates chunks by parsing the
input files and understanding their formats. Chunk
boundaries can be custom generated for the highest
probability of redundancy. In this example, boundaries
are created between words. This method does not suf-
fer from byte-shifting issues, and can produce larger
chunks, but is useful only for known data types and
can be very expensive because the data must be inter-
preted.

content-awareI chunkers I break store I data ]
[content—awareI chunkers I break storeI data I like I this ]

Figure 2: Content-aware chunking.
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Content-Agnostic Chunking: Content-agnostic
chunkers use the content to determine chunk bound-
aries, but do not understand the content format. In-
stead, they consider the features of the byte sequence
to deterministically identify boundaries.

This is usually done by generating a rolling hash
over a window of the input stream, e.g., using Rabin
fingerprinting [17]. Each hash is masked and the
resulting value is placed through a modulus operation.
If the result of the modulus is zero, then a chunk
boundary is created. The modulus value determines
the frequency of chunk generation. A modulus of 16,
for example, would produce an average chunk size of
16 bytes. Chunks produced this way have a high prob-
ability of being duplicates with other chunks produced
using the same method. This is because all such
chunks are guaranteed to end with a byte sequence
that generated modulus-value bits of zeros in the
rolling hash. This method eliminates the byte-shifting
issue that fixed-size chunking suffers from, but is
more expensive because of the hashing.

miss miss

[ this is I how‘ oontI ent-agnostic ch I unkers b I reak and sto I re data }

[contI ent-agnostic ch I unkers b I reak and sto I re data‘lik Iethis]
|— | —

miss miss

Figure 3: Content-agnostic chunking.

This method is also subject to ‘““external frag-
mentation” wherein matching chunks may have a
small number of bytes either before or after the chunk
boundaries that are also identical, but not necessarily
detected. This can be seen in Figure 3 in which the
missed duplicate byte fragments are highlighted. Fi-
nally, because the chunks are variable size, this can
lead to wasted storage on the physical level, for exam-
ple, a 3KB chunk requires a whole block in a 4KB
filesystem, wasting 1KB.

For 120, fixed-block chunking may not provide
enough deduplication, and content-aware chunking is
too expensive and does not generalize well. Aligning
chunk sizes with the physical disk is unnecessary,
because 1ZO produces just a single output stream,
which will be optimally stored by the underlying
filesystem. Our prototype therefore uses content-ag-
nostic chunking in order to provide maximum dedupli-
cation. Although still subject to external fragmenta-
tion, we implement an optimization (described in de-
tail in the data format section) in which contiguous
chunks can be merged into superchunks in the recon-
struction metadata.

Chunk Hash Lookup

Deduplication filesystems require the fast lookup
of chunk hashes to determine whether a data chunk
exists in the system or not. This is one reason why
these systems generally use large chunk sizes: the stor-
age overhead of this metadata increases rapidly for
smaller chunk sizes and lookup performance plummets
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as the data cannot be cached in memory anymore. On
the other hand, smaller chunks allow the detection of
more duplicates, increasing the deduplication ratio.

For the implementation of 1ZO it is possible to
discard the in-memory hash data once the compression
is completed. The main drawback of not storing this
metadata in the archive is that adding additional files
to the archive is not possible or computationally
expensive. Without this information, new chunks can-
not be directly compared to the existing chunks. How-
ever, the original hash table can be rebuilt by re-
chunking and re-hashing the existing archive. Another
option is to store this metadata in a separate file so that
additions can be made quickly, but consumers of the
archive are not burdened by the size overhead.

Not having to store the hash data reduces the
final archive size. For example, a 1 GB input file
deduplicated at a 512-byte average chunk size and
achieving a folding factor of 2 (deduplicated to 500
MB) would produce one million 24-byte {hash, off-
set} tuples, accounting for 24 MB or 5% of the ar-
chive size. Not storing this metadata also allows us to
use much smaller chunk sizes because we won’t have
to worry about “polluting” the output file with in-
flated hash data. However, the reconstruction metadata
(the {hash, offset} tuple list) still grows with de-
creased chunk size. For very small chunk sizes it is
worse than we would wish, due to increased segmen-
tation of the data. Figure 4 shows the amount of meta-
data from our deep freeze experiment for a single VM
image (37.3 GB) as input. The upper line shows the
expected growth of a factor of two. The reconstruction
metadata (lower line) roughly follows this line until a
chunk size of around 512 bytes. At 256 byte the meta-
data grows even faster, because increased segmenta-
tion requires more reconstruction information.

1000

-= |zo Metadata
Projected Growth /
100 -

10 4

Metadata Size (MB)

32768 16384 8192 4096 2048 1024 512 256
Chunk Size (Bytes)
Figure 4: Effects of chunk size on reconstruction
metadata.

Chunk Hash Collisions

By relying on the chunk hash to guarantee chunk
matches, 1ZO is able to operate on sequential input
streams. This is because 1ZO does not need to seek
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back in the stream to verify that chunks are identical.
Unlike rzip, which uses a 4-byte hash as a hint that the
indicated data may be identical, IZO uses a 16-byte
MDS5 hash to probabilistically guarantee that the indi-
cated chunks are the same. A detailed account of the
probability of a hash collision in a data deduplication
system is provided for EMC’s Centera [15].

The problem of a hash collision occurring be-
tween two chunks in a deduplication system simplifies
to the birthday paradox (see Appendix). In the case of
1ZO, the namespace n is the number of unique 128-bit
hashes (2!%®), while the number of things to be named ¢
is the number of chunks in the archive. With an archive
of 1 TB and an average chunk size of 1 KB, ¢ is 2°°.
For large c’s, the collision formula simplifies:
c*/(2n—c¢). For an archive of 1 TB using an average
chunk size of 1 KB, the probability of collision is 1 in
2% For a 1 PB archive, the probability is 1 in 2*%. For
comparison, the non-recoverable Bit Error Rate (BER)
of an ATA hard drive is 1 in 10'° (2°%) [15].

The I1Z0 Data Format

The design of the 1ZO data format was driven by
the desire to pack data and metadata as tightly as pos-
sible into the resulting archive. Instead of storing a list
of chunk identifiers for each file, we use offsets and
lengths within the archive. In particular, if a sequence
of chunks from the original file is new to the system,
then it is being stored as the same sequence into the
output file, requiring only one {offset, length} tuple.
Because we keep track of all individual segments dur-
ing compression, it is still possible to match sub-
sequences within this data.

The hash metadata is not being persistently
stored. The only metadata that is required is the path
and filename for each file in the archive, along with
file-specific information such as ctime, mtime, etc.,
and a list of {offset, length} tuples to reconstruct the
constituent files.

It should be noted that we create an 1ZO archive
in segments. A segment remains in memory until it is
completely prepared, and is then streamed out. This
allows us to perform random updates within the seg-
ment (such as to the segment length) without the need
to seek on disk. A typical segment size is 8§ MB. File
data can span segments, but each new file to the ar-
chive begins a new segment. Reconstruction refer-
ences in a given segment are always relative to the
beginning of the segment in which they sit. These ref-
erences always refer either to chunks in the same seg-
ment (positive values), or to chunks in a previous seg-
ment (negative values), but never to chunks in a future
segment. This property was designed into our data for-
mat to provide for appendability of archives. Just as
with tar, one can concatenate two IZO archives to form
another valid [ZO archive.

We demonstrate the 1ZO file format with an exam-
ple of processing two input files shown in Figure 5.
The processing steps are illustrated in Figure 6. The
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first four bytes of the 1ZO archive store a 32-bit seg-
ment length. The segment length is not known until
the entire segment is populated. Immediately follow-
ing the segment length is the reconstruction metadata.
The reconstruction metadata contains information
such as the file name and a list of {offset, length}
tuples to reconstruct the file. Following the recon-
struction metadata are the actual data chunks from the
first input file (see Figure 6(a)). As unique chunks are
encountered, their hashes and offsets are stored in the
in-memory hash table and the actual chunk data is
written to the current segment in the archive.

file1: [Thisuisuhowul IZOHbreaksHI and_stores_ I data ]
12 23 34 38

0
file2: [IZO,_,breaksHI andustoresHI data I _like_this ]
0 11 22 26 36
Figure 5: Example input files for 1ZO.

Once the first file has been processed, the lengths
of both the reconstruction metadata and data are
known, and we can update the segment length field
and stream out our segment (see Figure (b)). In this
example, the reconstruction metadata is placed at off-
set 4, and contains only one {offset, length} tuple,
because the first file did not provide any duplicate
chunks and was therefore written as-is. The filel
reconstruction metadata specifies that to recreate filel,
read 38 bytes from offset 22 relative to the beginning
of the segment (0+22=22).

Now, 1ZO processes the second file. The first
chunk matches the chunk stored at offset 34 with
length 11. The next chunk matches at offset 45 with
length 11. Because these two chunks are in sequence,
1ZO uses the superblock optimization and only modi-
fies the length of the matching data section from 11 to
22. The third chunk is also a contiguous duplicate of
four bytes at offset 56, resulting in another update to
the length to 26. The last chunk is new to the system
and is added to the archive, and its hash is added to the
in-memory hash table. Finally, the metadata length for
the second file is known and the segment is finalized
and streamed out. Looking at the reconstruction meta-
data for file2, it specifies reconstruction of the file by
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reading 26 bytes from an offset 26-bytes before the
current segment (60-26=34) and then 10 bytes from an
offset 34 bytes after the beginning of the current seg-
ment (60+34=94) (see Figure 6(c)).

Experiments

We performed our experiments on a 2-way 2.0
GHz 64-bit Intel Pentium Xeon server with 2 GBs of
DDR RAM with four 500 GB 7200 RPM UDMA/133
SATA disks of storage. This appliance hosts a SUSE
SLES64 version 10.1 operating system which is built
upon Glibc 2.4-31.30 and GCC 4.1.2. The operating
system and all executable were installed on the first
disk, while the remaining three disks were used for
data storage.

Tuning 1Z0

We first examined the effect of the block size
that 1ZO would use for the deep freeze experiment. We
tried average variable-sized blocks ranging from 32
KB in size down to 256 bytes. We ran each block size
against first a single 40 GB virtual machine image,
then added the next, and so on up to all 11 images.
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1 7 -=-200GB 240GB —-280GB —4-320GB
——360GB _-e-400GB -=-440GB
0

32768 16384 8192 4096 2048 1024 512 256
Chunk Size (Bytes)

Figure 7: Effects of chunk size on combined compres-

sion ratio.

Figure 7 shows the overall fold+compress ratios
for these image sets at each block size. The best over-
all compression is garnered from 2 KB block sizes. In
our experience with this tool, generally we find that
with large datasets, in the hundreds of GBs for

7 OAET 912

and_stores,_, data
2+23 (OXB2] 7434 (0X48] 2438

(a) Step 1: Filling the First Segment with Metadata and Unique Data Chunks

_ This_is_how_IZO_breaks_and_stores_data ]

o

4 22

60

(b) Step 2: Determining Superblocks, Finalizing Offsets, Streaming Segment Out

_ This_is_how_IZO_breaks_and_stores_data

_like_this

o

4 22

60 64 94 [OX79] 104

(c) Step 3: Working on and Finishing Segment for file2

Figure 6: Output creation.
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example, block sizes in the range of 2 KB to 8 KB
yield a good folding factor. When dataset size is
smaller than 10 GB or so, the block size can be
reduced, with 128 bytes as the lower limit.

Smaller blocks can have a negative impact on the
folding factor for two reasons. First, smaller blocks
can greatly increase the amount of metadata required
to store references to previously-seen blocks. Second,
smaller blocks more quickly fill the in-memory hash
table we use to store references to all of the blocks in
the system. With a large dataset, the hash table
becomes full, and we must start evicting block refer-
ences, becoming effectively blind to a number of pre-
viously seen blocks. For these reasons, in our subse-
quent experiments we use a 2KB block size for 1ZO.

Deep Freeze

The deep freeze experiment uses a number of
similar but not identical machines and tries to reduce
the amount of storage the set of images will require.
For this experiment we look at large-window dedupli-
cation (I1ZO), large-window compression (Irzip) and
small-window compression (gzip).

The dataset for this experiment was eleven 40 GB
Windows XP drive images of machines that started
with a similar install but then diverged for a year in a
community after-school program.

Table 1 shows the archive size and time required
for gzip, 1ZO and Irzip. Using the large-window dedu-
plication tuned to operate at a 2KB block size on a
typical XP system results in a folding factor of 1.92
for just a single machine. This compares to the gzip-
only compression ratio of 1.40. These two techniques
are more or less orthogonal and can therefore be com-
bined. Applying gzip to the 1ZO-archive provides an
overall compression ratio of 2.54.

Timewise it is clear that gzip is fairly intensive —
running it on the smaller 1ZO file instead of on the
original data results in time savings of 22%. For a sin-
gle image we see that deep freezing (fold+compress)
takes 43 minutes, and will result in an overall storage
savings of 61%. This compares to gzip alone on the
original data, which takes 55 minutes and yields a sav-
ings of only 28%. Irzip does not find much duplication,
and hands a large output to gzip, resulting in a 97
minute effort to save a combined 36%. So, not only
does the fold+compress technique yield the best over-
all compression ratio, it is also much faster than the
next fastest technique.

Where deep freezing really shines is when we
examine freezing more than one image at the same
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time. In these cases 1ZO can exploit cross-image simi-
larities to garner much higher folding factors. For five
images, 1ZO+gzip affects a 78% storage reduction in
144 minutes. Applying Irzip+gzip yields a data reduc-
tion of 36% and takes 527 minutes, longer than an
8-hour working day.

In the case of 11 images IZO achieves a folding
factor of 5.47, and gzip is able to push it 7.32, a stor-
age savings of 86%. This takes only 262 minutes,
more than 2 times faster than running Irzip+gzip on
only 5 images. We do not provide measurements for
Irzip on eleven images because of the long run-time
this would require.

450

400 MW org size .
Oorg.gz

350 izo.gz | | I
W Irzip.gz

Size (GB)

1 2 3 4 5 6 7 8 9 10 1
Number of Images
Figure 8: Compression of multiple Windows XP
images.

Figure 8 illustrates these finding across all of the
machine images. While the original size (in black) and
gzip size (in white) continue to increase rapidly with
the number of images, 1ZO+gzip (in stripes) grows
much more slowly. Irzip+gzip does slightly better than
gzip alone, but does not approach the 1ZO+gzip ratios.

The reason that 1ZO is able to achieve such high
folding factors on this data, and Irzip is not, has to do
with the effective window size of the two large-win-
dow compression tools. In order to take advantage of
any inter-image duplication at all, a tool must have a
window at least as large as a single image, in this case,
roughly 40 GB. To eliminate duplication across all 11
images, this window must encompass every image,
over 400 GB in our case. Irzip has an effective window
of around 900 MB, and is therefore unable to “see”
and eliminate the inter-image duplication. 1ZO, with a
2 KB average block size, has an effective window in
the TB range, and is therefore able to deduplicate
across the entire set of 11 images.

Number Size (GB) Time (minutes)
Images orig gzip izo izo.gz | lrzip | lrzip.gz || gzip | izo | izo.gz | lrzip | lrzip.gz
1 373 26.7 | 194 14.7 30.6 23.9 55 14 43 49 97
5 186.4 | 132.8 | 51.7 40.7 | 151.4 117.7 || 282 67 144 269 527
11 410.0 | 296.6 | 74.9 56.0 - — || 556 | 153 262 - -
Table 1: Deep freeze scenario compression numbers using 2KB variable chunks.
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VM Distribution

This scenario simulates the case when a com-
pany needs to update a set of standard images, which
may be distributed globally to different remote offices
or branches. Traditionally, images are either simply
gzip compressed, or a delta is computed between the
two images, and the delta is compressed. In the case of
creating deltas, the original image is assumed to be at
the destination already. We investigate the use of 1ZO
to produce a folded delta that can be applied to the
original image to produce an updated image.

For this scenario we used seven “clean installs™
of RedHat Enterprise Linux Workstation version re-
lease 4 to simulate incremental upgrades of a base sys-
tem that might be used in a virtual machine environ-
ment. We have one install for each update (ul-u6) plus
the original release. Each install is done on a 10 GB
partition, the majority (roughly 7.5 GB) of which is
sparse.

1600

M Full Image.gz
1400 —OxDelta.gz
|1zoDelta.gz

1200 -

rhel4 ul u2 u3 ud ub ué
RHELA4 Version
Figure 9: Binary deltas between incremental VM ver-
sions.

Figure 9 shows the smallest deltas that can be
achieved between successive updates to the previous
image. ul represents the delta to the base, u2 repre-
sents the delta to ul, and so on. As illustrated, the
overall image size after gzip compression is just over a
gigabyte. Already this is a significant savings due pri-
marily to the sparseness of the 10 GB image. When
xdelta is applied to the images first, and then gzip is
applied, the data size is reduced to an average size of
851 MB, or an additional 21% on average. 1ZO, how-
ever, provides an additional 73% storage savings over
gzip alone. This reduces the amount of data to an aver-
age of 290 MB that is needed to transform one 10 GB
image into its subsequent version — just 3% of the
entire image size, and roughly three times smaller than
xdelta+gzip .

Backup

In this experiment, we look at the application of
large-window compression techniques to weekly
backups of a single user’s machine. The goal is to pro-
vide a traditional incremental backup of the machine
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without requiring any end user action, nor the ability
to install clients on the end user machine.

The backups in question are full filesystem back-
ups of a machine running Windows XP, including all
data, application, and system files. The machine is one
of the authors’ actual workstation, used every day dur-
ing the work week for email, office applications, and
software development.

The backup schedule used by this machine was
very simple. It completes the first backup of roughly
23 GB on Sept 8, and then performs a full weekly
backup for eight weeks. This scenario is analogous to
the scenario described in the introduction, wherein a
user may be running an operating system in a VM
without palatable means of backup from within the
system. By running large-window compression over
the entire system periodically, the system VM admini-
strator is able to effectively perform multiple full sys-
tem backups in an operating-system agnostic way,
while achieving smart incremental backup space effi-
ciency.

W Data in Backup ‘
O After IZO Compression

98 915 922 929 10/6 1013 10720 10/27
Backup Week
Figure 10: Compression of weekly system backups.

Based on our previous experiments, we chose to
use a content-agnostic chunker based on Rabin finger-
printing to produce blocks of variable size of around 2
KB for this test. The results we observed from these
experiments were very encouraging for this method of
backup (see Figure 10). The first observation was that
even for the very first backup, the size of the data was
reduced from 23 GB to 15 GB (note, for these experi-
ments we have not gziped the resulting 1ZO files).
Adding successive backups (using the append func-
tionality of 1ZO) consistently showed that very little
additional data was added to the system. In fact, dur-
ing the two months of use of this machine, the user
added just less than 1 GB of unique data. Including all
data and metadata, 1ZO is able to store all 8 full
filesystem backups in 17 GB, which is smaller than
the original 23 GB image itself.

It is interesting to note where the growth in the
1ZO archive actually occurs (see Figure 11). The 12O
archive grows from 15 GB to store a single image to
17 GB to store all 8 images. However, the growth of
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the actual data stored in the archive grows even more
slowly. The predominant growth of the data can be at-
tributed to the reconstruction metadata used to point
back to the data in previous backups. We are currently
investigating ways to compress the metadata itself, by
looking at similarities in the metadata between differ-
ent backups.

17 4 O1Z0 Metadata
W 1Z0 Data

Size (GB)
>

98 915 922 929 1066 1013 10/20 10/27
Backup Week
Figure 11: Increase in the amount of meta data stored
in 1ZO for weekly system backups.
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Figure 12: Compression of a collection of OS/2 VM

images.

These numbers are for a single machine. The
advantages to performing multiple machine backups
into the same 1ZO archive should be comparable to the
advantages seen in the deep freeze experiments.

Next, we studied as a proof of concept the use of
deduplication to enable backup of a VM running a
somewhat uncommon OS. The idea is to verify that
such machines can be backed up, even if there is no
client or filesystem support for them. We created a vir-
tual machine using Microsoft VirtualPC and OS/2
Warp 4. We then ran the machine and performed sim-
ple filesystem modifications in OS/2 by adding data to
the disk or removing files from disk. Once in a while,
we stopped the machine and created a “backup” by
copying the VM image. It is clear that this approach
does not fully capture the change that would occur
during real-world use of an OS/2 installation, but it
provides some insight in whether IZO can achieve
incremental backup space efficiency for OS/2 as well.
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Figure 12 shows the results of compressing up to
five backups. The initial VM image is only 281 MB,
and 1ZO is able to compress the image to 145 MB
already. Adding additional backups slowly increases
the overall archive size to 203 MB. During the experi-
ment, we added a total of 93 MB of new data and
removed 32 MB of data from the OS/2 filesystem. Our
backup #5 encodes all five backups and only requires
58 MB of additional space over the base image,
clearly providing incremental backup functionality.

Conclusions and Future Work

Large-window compression is a fairly new tech-
nology that has many applications to the domain of vir-
tual machine administration. Initial experiments show
storage savings of up to 86% for some scenarios.
These compression savings can enable new approaches
to tasks such as machine image distribution and
weekly virtual machine backups.

Our IZO compression prototype uses algorithms
that originate from online deduplication filesystems.
We find that these methods are well-suited for offline
large-window compression as well. They require rela-
tively little memory and little time when processing
large data sets. While 1ZO removes global redundan-
cies, it relies on small-window tools such as gzip to
compress the remaining data. We observe that these
two approaches are orthogonal to each other — the
combined compression ratio is very close to the prod-
uct of the individual compression ratios. An additional
benefit is that the combined processing time of 1ZO+
gzip is generally less than the time it takes gzip to
process the original input file alone. This is explained
by the fact that IZO quickly removes global redundan-
cies and gzip is left to compress a much smaller
amount of data afterwards.

We are quite excited about the results of our ini-
tial experimental evaluation, but we also found several
shortcomings of our prototype that we plan to address
in our ongoing research.

First, we are concerned with the rapid growth of
metadata in the backup scenario in Figure 11. Because
the incremental changes between backups are small,
we expect that the metadata between the two versions
should be very similar as well. One way of confirming
this would be to apply 1ZO to the archive yet again,
but we’d rather store the metadata more efficiently in
the first place.

Another area of interest is to determine optimal
chunk size automatically. We currently require larger
chunk sizes for larger input sets, because 1ZO eventu-
ally cannot keep all chunk hashes in memory, reducing
the overall fold factor. It may be possible to begin
compression with smaller chunks, and then increasing
chunk size over time. A different approach that we
would like to investigate is the encoding of super-
chunks — sequences of chunks that occur repeatedly

130 22nd Large Installation System Administration Conference (LISA ’08)



Smith, Pieper, Gruhl, and Villa Real

because the underlying data is always contiguous as
well (e.g., a large music file that is chunked into a
sequence of hundreds of chunks). Lastly, we may be
able to modify our hash eviction strategy to yield bet-
ter results or lower memory requirements.

Finally, we are planning to add some conve-
nience features to 1ZO, such as integration with gzip
and bzip2, to increase the ease-of-use even further.
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Appendix: Birthday Paradox

The birthday paradox asks how many people need
to be in a room together before the probability of two of
them sharing a birthday is 50%. The formula to describe
the probability is well known: 1 — n!/(n‘(n — ¢)!) where
n is the namespace (365 days) and ¢ are the number of
things (people) with names (birthdays). In the case of
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the birthday paradox, there are 365 days, and by setting
the probability to 50%, we arrive at the answer that it
requires 23 people in a room before the likelihood of
two of them sharing a birthday is 50%.
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