
IFM: A Scalable High Resolution Flood
Modeling Framework

Swati Singhal1, Sandhya Aneja2, Frank Liu1, Lucas Villa Real1,
and Thomas George1

1 IBM Research
2 Universiti Brunei Darussalam, Brunei Darussalam

Abstract. Accurate and timely flood forecasts are essential for effective
management of flood disasters, which has become increasingly frequent
over the last decade. Obtaining such forecasts requires high resolution in-
tegrated weather and flood models with computational costs optimized
to provide sufficient lead time. Existing overland flood modeling soft-
ware packages do not readily scale to topography grids of large size and
only permit coarse resolution modeling of large regions. In this paper, we
present a highly scalable, integrated flood forecasting system called IFM
that runs on both shared and distributed memory architectures, effec-
tively allowing the computation of domains with billions of cells. In order
to optimize IFM for large areas, we focus on the computationally expen-
sive overland routing engine. We describe a parallelization scheme and
novel strategies to partition irregular domains to minimize load imbal-
ance in the presence of memory constraints that results in 40% reduction
in time compared to best uniform partitioning. We demonstrate the scal-
ability of the proposed approach for up to 8192 processors on large scale
real-world domains. Our model can provide a 48-hour flood forecast on
a watershed of 656 million cells in under 5 minutes.

1 Introduction

Operational flood forecasting is becoming increasingly important due to the
changing global climate and frequent incidence of flood disasters [1]. The most
common causes for flooding are sudden precipitation in urban areas with poor
drainage or seasonal storms resulting in persistent rainfall, which results in over-
flowing water bodies. Hence, in recent years there has been a strong focus on two
stage mechanisms to predict flooding events. The first stage employs a weather
model to predict precipitation. The second stage uses these predictions as input
to an overland flood model, which computes surface runoff and routes the flow
taking into account surface characteristics such as variation in land use type and
topography. In such a system, the weather forecasting is performed using fine
resolution atmospheric models that discretize the partial differential equations
representing evolution of atmospheric flows in time [12], while the overland flows
are simulated via equations based on conservation of mass and momentum with
the vertical effects simplified to yield the 2-D shallow water equation [14].

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 692–703, 2014.
c© Springer International Publishing Switzerland 2014

IFM: A Scalable High Resolution Flood Modeling Framework 693

Advances in scaling high resolution weather models using contemporary HPC
systems have made it feasible to obtain highly accurate fine-grained forecasts
for large geographical regions [4, 5]. Unfortunately, most of the existing flood
modeling packages [13], [2] primarily focus on usability and are designed for
hydrologists to work on medium size desktop machines, which does not permit
scaling to large size fine resolution domains for which weather forecasts are
available. The domains considered in this paper for operational flood forecasting
include a grid with 1 km horizontal resolution for the precipitation estimates
and 1m LiDAR [9] topography data from the city of Rio de Janeiro – the latter
consisting of 2.4 billion cells. With existing flood modeling software it is not
feasible to perform modeling on such a large grid due to the large memory
requirements and running times. On the other hand, efficient parallelization of
the modeling requires a load-balanced partitioning of the domain, which is non-
trivial due to domain irregularity and processor memory constraints.

Contributions:

– We describe an integrated flood forecasting system that readily handles grid
sizes up to a billion cells and also incorporates high resolution meso-scale
weather forecasts and other fine resolution topographical information for a
target region with minimal human effort. To the best of our knowledge, this is
the first high resolution operational flood forecasting with such capabilities.

– We propose and implement a distributed memory (MPI) parallelization
strategy for diffusive water routing algorithms. Our approach is based on
statistical modeling of the true workload using observed computational times
and a novel iterative partitioning scheme, which improves load balance while
taking into account memory constraints on individual processors.

– We evaluate the serial version and the various parallelization strategies on
HPC systems for up to 8192 processors on real world domains and demon-
strate that a large domain of 656 million cells can be solved under 5 minutes.

The rest of the paper is organized as follows: Section 2 discusses related work
on parallelization of flood routing engines. Section 3 provides an overview of our
integrated flood modeling framework. Section 4 discusses our distributed memory
parallelization strategy whereas Section 5 introduces the various approaches to
domain partitioning. Section 6 describes empirical evaluation of our approach
on real world domains. Concluding remarks are presented in Section 7.

2 Related Work

Prior approaches on scaling water routing in flood modeling employ multipro-
cessor distributed architecture and divide the computation either via functional
or domain decomposition.

Methods based on functional decomposition involve parallelization of nested
loops to process the grid cells more efficiently. Neal et al. [7] explored the in-
trinsic parallelism in the functions that looped around the floodplain cells of a
domain via OpenMP and demonstrated a speedup up to 5.8× relative to the

694 S. Singhal et al.

serial algorithm for 8 cores with domain sizes varying from 3,000 to 3 million
cells. The key limiting factors for the parallel speedup were the serial time and
processor load imbalances. For the scale of problems we are interested in, such a
simple shared memory implementation would not suffice due to scalability limits.

The second class of methods employ domain decomposition, where the grid
to be simulated is split into smaller domains that are processed in parallel. The
main challenge here is to is figure out a partitioning that achieves load balance.
This task is particularly difficult due to three main reasons: (a) irregularity of
domain, (b) dependence of computation costs on not only static properties of the
domain, but also on dynamic attributes (e.g., wet cells in the neighborhood make
the routing computation much more expensive than that of dry neighborhoods),
and (c) memory constraints of individual processors. For our work, we adopt the
domain decomposition approach due to its better scalability.

There is a large body of literature [8,10,16] on using domain decomposition to
improve scalability of hydrological models via message-passing interfaces. These
modeling approaches involve partitioning into regular rectangular shaped sub-
domains primarily due to the huge software changes required to handle irregular
shaped sub-domains. In particular, Yu [16] presents an approach to parallelize a
two-dimensional model by spatially dividing the target region into sub-regions
of equal size and dimension according to the number of available processors.
Empirical performance evaluation of that approach on a large domain (232,000
cells) indicates a maximum speedup of 1.75×, 1.98× and 2.71× for MPI simu-
lations using 2, 4, and 8 nodes, respectively, with associated efficiencies of 0.87,
0.50 and 0.33. A recent work [11] presents a hybrid MPI-OpenMP version that
incorporates a master-slave model of MPI workload balancing for independent
watersheds and OpenMP based shared memory parallelization within each basin.
With this hybrid approach, the speedup was reported to be 13× on a 16 core ma-
chine. While this approach works on moderate sized systems with large shared
memory, it does not scale to large watersheds due to memory limitations at a
single processor and load imbalance due to a wide range of basin sizes.

3 Integrated Flood Modeling System

The Integrated Flood Model (IFM) is a hydrological model developed at IBM
Research aimed at providing high resolution flood forecasts. IFM consists of two
main components, a soil and an overland routing model, shown in Figure 1.
Precipitation forecasts are provided by a state of the art weather model. The
soil model estimates the surface-runoff based on the incoming precipitation,
soil, and land use properties. These runoff estimates are input to the overland
flood routing engine, which calculates the water in-flows and out-flows on a two-
dimensional grid based on topological characteristics. The remnant water-flow
from a simulation step is then fed back to the soil model to more accurately
determine the water height in the next simulation step. In the serialized imple-
mentation of IFM, the overland routing dominates the execution time. Hence,
we mainly focus on parallelizing the overland routing component described next.

IFM: A Scalable High Resolution Flood Modeling Framework 695

Fig. 1. IBM Integrated Flood & Weather Modeling
System

Fig. 2. Rio domain delimited
by a bounding box

Overland Flood Routing. Overland water movement in IFM is implemented
as diffusive routing, which allows the distribution of lateral inflow in both space
and time [6] with significant reduction in computation cost. To be specific, the
inflow in the X direction for the ith cell denoted by OLRX [i] is given by the
Manning formula [15] as OLRX [i] = 1

N [j]

√|S[i, j]| ∗ Δd ∗H [j]
η
, where the jth

cell adjoins the ith cell along the X-direction, H [j] denotes the water height or
surface-runoff of the jth cell estimated by the soil model, N [j] is the Manning’s
friction coefficient determined by land use data, η = 5/3 is based on the laminar
and mixed laminar-turbulent conditions of the flow, Δd is the distance between
the two cells and the terrain slope S[i, j] indicates a net dip towards the jth

cell (i.e., S[i, j] > 0). This slope itself is calculated as S[i, j] = 1
Δd (H [i] + h[i]−

H [j]− h[j]), where h[i] denotes the natural elevation of the ith cell. The above
routing is implemented on a 2D grid along both X and Y directions. First, the
flow rate is calculated in the X direction (row-wise), letting the fluid flow from
cell i to its neighbors or the other way round. Then, the flow rate is calculated in
the Y direction (column-wise) to determine the in-flow in Y direction OLRY [i]
and the resulting in-flows are used to re-estimate the water height H [i].

4 Distributed Memory Parallelization

In this section, we describe a distributed memory MPI implementation that par-
titions the domain into disjoint sub areas to be assigned to individual processors.
To achieve effective parallelization, we need to address two main challenges:

Partitioning Irregular Shaped Domains. Watersheds tend to be highly
irregular in shape as shown in Figure 2. Direct domain decomposition of such
grids into possibly irregular sub-regions is non-trivial and the software changes
required to support it are enormous. On the other hand, mapping to a regular
grid results in grid cells that are not required for simulation and leads to wasted
computation and extra book-keeping. Further, balancing the grid point count
alone might result in heavy load imbalance among the processors. The processor
memory limits also narrow the space of feasible partitionings.

Handling CommonBoundaries. Even though the disjoint areas are processed
independently, the parallel processing of the domains requires communication of

696 S. Singhal et al.

the shared boundary cells (halo region) after every time step to synchronize among
the different processors.

In our current work, we adopt a simple partitioning approach that divides the
bounding rectangular grid of the irregular real world domain into tiles (possibly
of different sizes), one for each processor. In Section 5, we discuss strategies to
identify such a rectangular partitioning that optimizes load balance and mini-
mizes communication costs in the presence of processor memory constraints.

The regularity of the tile structure allows the common boundaries to be read-
ily handled. To avoid loading the entire dataset on a single processor, processor
0 streams each row of the mask file to identify the valid cells. Once the parti-
tions are decided, processor 0 sends their coordinates and the neighbors at each
boundary with their respective extent of overlap. The rest of the processes wait
to receive their partition information. Afterwards, each process loads the sub-
domain based on the received data using a collective parallel I/O operation [3].

To process the partitions in parallel, we define a halo region of fixed width
around each partition to store all the required information from neighbors during
a simulation. Since the water flow in the domain is simulated from bottom to top
and left to right, the top and right halo regions are used for runoff computations
while left and bottom halo regions are simply used to pass information. The sim-
ulation starts by exchanging static information, e.g., the elevation and Manning’s
coefficients. In every iteration, the water heights are first updated based on the
amount of runoff received from the left and bottom neighbors. After this step,
computation is performed using the updated height values. However, processing
of top and right boundaries is deferred and performed only after receiving the
updated height values from the top and right neighbors. Note that since the tiles
are not all of the same size, there can be multiple neighbors in each direction.

5 Domain Partitioning Approaches

Desiderata. Our primary objective is to identify a partitioning of the bounding
grid of an irregular region into rectangular tiles that minimizes the net simulation
time. This requires balancing workload across nodes while keeping communica-
tion costs low. Due to the nature of the computations in overland routing, the
workload assigned to a node largely depends on the number of valid grid points
assigned to it, i.e., all the points in the original irregular domain. Hence, it is
highly likely that achieving load balance will require non-uniform tile sizes. Com-
munication costs borne by a node, on the other hand, depend on the number of
tiles adjoining the assigned tile and are minimized when the tile boundaries are
aligned as in the case of a uniform partitioning. In addition to the load balance
and communication reduction, it is also critical that the rectangular tile assigned
to each node does not exceed its memory limit.

Partition Representation. Let mx×my be the size of the bounding rectangu-
lar grid and N the number of processor nodes. Common partitioning strategies
include: (a) 1-D decomposition where the N processors are arranged in a chain
and the resulting tiles are row or column-wise slices of the original domain, (b)

IFM: A Scalable High Resolution Flood Modeling Framework 697

2-D decomposition where the processors themselves are arranged in a Nx ×Ny

grid and the original domain is divided into Nx ×Ny tiles slicing along one di-
mension and then another for better alignment of tiles. In non-uniform slicing,
it is preferable to divide along the longer dimension of the domain grid. Without
loss of generality, we assume that the tile construction involves a vertical slicing
followed by a horizontal slicing of each of the vertical slices. Given a processor
grid Nx ×Ny (1-D case corresponds to Nx = N and Ny = 1), the partitioning

can then be represented in terms of the vertical boundaries {x(i), [i]Nx
1 } and

horizontal boundaries {y(i, j) [j]
Ny

1 , [i]Nx
1 }. In the 2-D decomposition case, it

is preferable to choose the processor grid dimensions Nx and Ny to the closest
two factors of N , i.e., nearly equal to each other, for better distribution of com-
munication costs. To ensure a balanced aspect ratio for each individual tile, the
factors Nx and Ny can be assigned to the X-Y dimensions so that the larger
domain dimension corresponds to the larger of Nx and Ny. In each of the above
cases, the decomposition could be based either on ensuring that the tiles are
nearly equal in size (i.e., number of total grid points) which reduces communica-
tion costs or nearly equal in workload (i.e., roughly proportional to the number
of valid grid points). These correspond to different variants: (a) 1D-uniform, (b)
1D-nonuniform, (c) 2D-uniform, and (d) 2D-nonuniform. The first three variants
are relatively simple, but less likely to achieve load balance and more prone to
violate processor memory constraints. For the flood modeling, since computa-
tion tends to cost more than communication, the last variant is likely to perform
better in terms of net simulation time on large grids. Determining its optimal
partition, however, especially in the face of memory constraints, is non-trivial.

5.1 Two Dimensional Non-uniform Partitioning

We now focus on 2-D partitioning where the workload needs to be balanced
while satisfying memory constraints. Although it is natural to assume that the
workload depends only on valid cells, empirical observations point to a significant
variation in computation time among tiles with nearly identical valid cells, as
shown in Table 1. Hence, we assume the workload to be a linear function of the
number of valid and invalid cells. Let Cv(x, y), Ca(x, y) and Cw(x, y) denote
the number of valid grid points, the total number of cells, and the workload in
the sub-grid with corners [(0, 0), (x, 0), (0, y), (x, y)] inclusive of the boundaries.
Then, the assumption on the workload translates to Cw(x, y) = Cv(x, y) +
α(Ca(x, y) − Cv(x, y)), where 0 ≤ α < 1 is the weighting factor for invalid
cells. The optimal value for α can be chosen based on empirically observed
computation times (α = 0 equals to focusing on valid cells alone). Experiments
in Section 6 are based on choosing α = 1/73, which was computed from empirical
data.

The total workload of the grid is given by Cw
tot = Cw(mx,my) and the

workload up to and including the xth column is Cw(x,my). Let W (i, j) de-
note the workload in the jth horizontal tile of ith vertical slice. Using the nota-
tion for tile boundaries, this can be computed as W (i, j) = Cw(x(i), y(i, j)) −
Cw(x(i), y(i, j−1))−Cw(x(i−1), y(i, j))+Cw(x(i−1), y(i, j−1)). The number of

698 S. Singhal et al.

Table 1. Computation times of partitions with comparable number of valid cells

Invalid cells Valid cells Time (sec.)
Partition 1 2,457,186 79,998 622.92
Partition 2 840,252 80,708 566.58
Partition 3 418,072 80,808 541.46

valid cells V (i, j) can be similarly obtained while the total number of cells T (i, j)
can be computed more efficiently as T (i, j) = (x(i)−x(i−1))∗(y(i, j)−y(i, j−1)).

In the absence of memory constraints, the ideal 2D partitioning corresponds
to the case where W (i, j) = Cw

tot/(Nx × Ny), ∀i, j. Such a perfect partitioning
is, often, not feasible since the tiles need to be rectangular. However, one can
obtain a nearly equal distribution via a two step approach, where in the first step,
the vertical slices are each chosen to approximately contain workload equal to
Cw

tot/Nx and each of these slices is further horizontally partitioned into tiles that
roughly contain 1/Ny of the workload in entire slice. The ith vertical boundary
x(i) is picked so that it is the smallest column index such that the workload over

all rows and up to the x(i)th column exceeds
iCw

tot

Nx
, i.e.,

Cw(x(i) − 1,my) <
iCw

tot

Nx
≤ Cw(x(i),my), [i]Nx

1 . (1)

Similarly, for each vertical slice i, we pick the jth horizontal boundary y(i, j)
with the smallest row index such that the workload on all the slice columns and
up to the y(i, j)th row exceeds j

Ny
fraction of the total workload in that slice.

The above two-step slicing approach results in a fairly equitable partitioning
of workload, but the resulting tiles might not fit into the memory available at
a single node of a distributed memory cluster, in which case the partitioning
cannot be used for simulation. When there are memory constraints that place
an upper bound Tmax on the tile size (i.e., total number of cells, not just valid
ones) that can be accommodated at each node, some of the processors will need
to be assigned tiles with total size close to Tmax, but much smaller number of
valid cells. Typically, these would correspond to ocean and land portions outside
of the targeted watersheds. To make up for the lighter workload of the maximal
tile nodes, it is necessary to increase the workload for all the other nodes in a
balanced fashion. Figuring out the optimal partitioning for this scenario is hard
since the tiles need to be contiguous and one cannot estimate the number of
maximal size tiles and the desired workload distribution in a single step.

Typically, the first stage of vertical slicing results in vertical slices with width
much smaller than Tmax. Hence, for ease of presentation, we consider partitioning
taking into account the tile size limit Tmax only in the second stage of horizon-
tal slicing.1 To eliminate inefficiencies, we only consider the grid allocation and
workload contributions from the set of rows R(i) that have at least one valid
cell in the chosen vertical slice. Algorithm 1 provides details of the horizontal

1 When Tmax is small, the first stage of horizontal slicing can also be adapted in a
similar fashion as in Algorithm 1 to account for memory constraints.

IFM: A Scalable High Resolution Flood Modeling Framework 699

partitioning developed for the ith vertical slice. The key idea in this approach is
to perform multiple iterations scanning the vertical slice and in each iteration,
construct tiles from one end to another while dynamically re-estimating an eq-
uitable distribution of remaining workload among the remaining processors. In
the very first iteration, the dynamic estimation of workload share depends only
on allocations till that point, whereas in the later iterations, we also incorporate
information from the previous iteration on the number of maximal size tiles and
the workload covered in those tiles.

Let W (i) = W denote the total workload of the ith vertical slice (based on the
rows in R(i)) and Lmax the maximum allowed tile length based on Tmax and the

width of the ith slice. At any stage in the kth scan, let N
(k)
A denote the number

of nodes that have been assigned tiles and W
(k)
A denote the already allocated

workload. In the first iteration, the best one can do is to assume that the rest
of the workload is going to equally shared among yet to be allocated nodes and
the desired workload for the next tile is given by

WA
eq =

W −W
(k)
A

Ny −N
(k)
A

.

If the next tile length required to cover workload of Weq is greater than Lmax,
then the tile length is chosen to be exactly Lmax. In such a case, the workload
to be shouldered by the remaining processors goes up even further resulting in
a high load imbalance. Further, the last tile itself may reach the maximal size
with additional unassigned workload due to an early under allocation.

To address this issue, we perform additional rounds of assignment where a more
balancedworkload share is computed incorporating information from the previous

iteration. Let N
(k)
M and W

(k)
M denote the number of nodes that attain maximum

tile size and the net workload assigned to them in the kth iteration (or up to that

point in case of current iteration), Let N
(k)
E and W

(k)
E denote the minimum num-

ber of tiles required to cover the unassigned region at the end and the associated
workload for the kth iteration. In the earlier stages in the (k + 1)th iteration, it

would be reasonable to assume that among the remaining (Ny −N
(k)
A) nodes, ap-

proximately (N
(k)
M −N

(k+1)
M +N

(k)
E) would have to be assigned maximal size tiles

roughly accounting for W
(k)
M − W

(k+1)
M + W

(k)
E of the workload. Keeping this in

view, a better estimate of the workload to be shared is given by

WB
eq =

W −W
(k+1)
A −W

(k)
M +W

(k+1)
M −W

(k)
E

Ny −N
(k+1)
A −N

(k)
M +N

(k+1)
M −N

(k)
E

.

This estimate tends to overload the processors aggressively from the very
beginning and might result in relatively no less or no work for the last few
processors. Often, WB

eq is higher than WA
eq, but to address scenarios with com-

plicated arrangement of sparse workload regions, we consider the maximum of
the two choices. When Tmax is large enough to allow a feasible partitioning, it
can be shown that the above algorithm converges to a solution (not necessarily

optimal) in a finite number of rounds since W
(k)
E decreases after each iteration.

700 S. Singhal et al.

Algorithm 1. Two-dimensional partitioning with memory constraints
Input: Vertical slice with column indices x(i) and x(i− 1), Workload matrix Cw computed over
rows in R(i) with at least one valid cell, Max. tile size Tmax, Processors along Y dimension Ny ,
Max. iterations Kmax
Output: Partitioning of the slice into horizontal tiles y(i, j), [j]

Ny
1

Method: k ← 1;

Max. tile length Lmax ← ceil(Tmax
x(i)−x(i−1)

)

Last valid row ymax ← max(R(i))

Total workload of ith slice, W ← Cw(x(i),my) − Cw(x(i− 1),my);

while (k ≤ 2) or ((k <= Kmax) and (W
(k−1)
E > 0)) do

(N
(k)
A ,W

(k)
A , N

(k)
M ,W

((k)
M , y[i, 0]) ← (0, 0, 0, 0, 0)

for j = 1 to Ny do

WA
eq ← W−W

(1)
A

Ny−N
(1)
A

if (k > 1) then

WB
eq =

W−W
(k)
A

−W
(k−1)
M

+W
(k)
M

−W
(k−1)
E

Ny−N
(k)
A

−N
(k−1)
M

+N
(k)
M

−N
(k−1)
E

WA
eq = max(0,WA

eq,W
B
eq)

ytmp ← arg miny = {y|Cw(x(i), y) − Cw(x(i− 1), y) > W
(k)
A + WA

eq}
if (ytmp − 1 < min(y(i, j − 1) + Lmax, ymax)) then

y(i, j) ← ytmp − 1
else

y(i, j) ← min(y(i, j − 1) + Lmax, ymax)

N
(k)
M ← N

(k)
M + 1

W
(k)
M ← W

(k)
M + W (i, j)

N
(k)
A ← N

(k)
A + 1

W
(k)
A ← W

(k)
A + W (i, j)

N
(k)
E ← ceil(

|R(i)
⋂{y(i,Ny),··· ,my}|

Lmax)

W
(k)
E ← W − W

(k)
A

6 Empirical Evaluation

6.1 Experimental Setup

Hardware & Software Configurations. For our experiments, we used an
IBM Blue Gene BG/P computer that has four 850 MHz embedded PowerPC
450 cores with a peak floating point throughput of 13.6 GF/node. For compiling
the software, we used IBM XLC compilers on BG/P with -O3 optimization. In
order to handle various platform independent binary files as input and output,
we incorporated Network Common Data Format (NetCDF) support for I/O. A
version of NetCDF dubbed PnetCDF [3] that is built on top of MPI-IO provides
an easy to use interface to perform parallel I/O on large scale supercomputers
and was, therefore, integrated into IFM for all I/O.

Experiments were performed on two real world domains (Brunei and Rio)
using multiple partitioning schemes, with details given in Table 2. For the Brunei
domain, a topography grid with spatial resolution of 90m and 1688×1318 cells
(of which 72% are valid) was used. The Rio domain was processed with a grid
of 1-meter resolution derived from LiDAR, with 46% of its 18369×35726 cells
being valid.

IFM: A Scalable High Resolution Flood Modeling Framework 701

Table 2. Details of the partitioning schemes

Partitioning Scheme Description
1D-N Uniform 1D split along longer dimension
1D-VM 1D split that balances #valid cells under memory constraints
2D-N Uniform 2D split that balances #total cells
2D-VM 2D split that balances #valid cells under memory constraints
2D-WVM 2D split that balances workload assumed to be linear function of

#valid and #invalid cells with α = 1/73 (see Section 5.1)

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Partition Times

1D-N

2D-N

1D-VM

2D-VM

2D-WVM

Fig. 3. Partitioning times for varying
number of processors

0

200

400

600

800

1000

1200

1D-N 2D-N 1D-VM 2D-VM 2D-WVM

T
i
m
e

(
s
e
c
o
n
d
s
)

Computation Time

PartitionTime

Fig. 4. Partition vs total times on 4096
processors (Rio domain)

6.2 Results

We now present results of empirical evaluation of our partitioning strategies.

Partitioning Costs. Figure 3 shows the partitioning costs for the various
schemes with increasing number of processors. As the number of processors grow,
a modest increment in partitioning costs is seen. Figure 4 shows the split up of
partitioning and total computation times for a 48 hour forecast for the Rio
domain based on 1440 simulation steps. The näıve partitioning schemes take
negligible time. However, the computation times for 2D-N partitioning scheme
is almost double that of the best case (2D-WVM). These figures indicate that
it is worthwhile to spend the extra partitioning time since it is a one time cost
that can be amortized while simulating larger number of timesteps. (and which
can be cached to save computation time in future runs)

Effect on Load Balancing. Table 3 shows the load balance achieved by the
various partitioning schemes. 2D-N has the highest load imbalance (116.34%)
and our weighted 2D-WVM partitioning scheme has the lowest load imbal-
ance (6.36%), which is also significantly superior to the unweighted version 2D-
VM(32%). Improving the load balance results in a 40% reduction in total time
over the best näıve partitioning scheme, which is 1D-N for the Rio domain.

Scaling of MPI Implementation. We now present the results of experimen-
tation with the various partitioning schemes for varying number of processors.
Figure 5a shows the scaling behavior for Brunei domain for 8 – 512 processors.
The 1D-N scheme outperforms the 2D-N scheme for almost all the processor

702 S. Singhal et al.

Table 3. Cell distribution for partitions with maximum times and the percentage
imbalance with respect to average time across all processors (Rio domain)

Scheme Invalid Cells Valid Cells Max Time(s) Avg. Time (s) %Imbalance
1D-N 35357 129964 860.20 495.77 73.51
2D-N 0 160433 1061.27 490.57 116.34
1D-V 39937 125384 815.50 486.44 67.65
2D-VM 2440289 81151 642.28 486.43 32
2D-WVM 0 75775 520.86 489.72 6.36

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

1D-N

2D-N

1D-VM

2D-VM

2D-WVM

(a) Times for the Brunei domain

10
2

10
3

10
4

10
2

10
3

10
4

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

1D-N

2D-N

1D-VM

2D-VM

2D-WVM

(b) Times for the Rio domain

Fig. 5. Log-log plot of scaling behavior with increasing number of processors

configurations. Since this domain has a high number of valid cells in comparison
to the total number (72%), 2D-N partitioning does almost as well as 2D-VM and
2D-WVM schemes for 512 processors. This is because only a small fraction of
processors are not completely explored and there is only a slight load imbalance
even for the 2D-N scheme. Overall we observe a 15–27% improvement in perfor-
mance for the 2D-WVM scheme in comparison to a näıve 2D decomposition for
this range of processors. Figure 5b shows the scaling behavior for all the parti-
tioning schemes for the Rio domain. Here, the 1D-N näıve partitioning scheme
consistently outperforms the 2D-N scheme for up to 8192 processors. This can
be due to the fact that very few processors are kept idle at times due to the dis-
tribution of valid and invalid cells in the Rio domain. However, we do see signs
of flattening of the curves beyond 4096 for all the schemes except 2D-WVM.

7 Conclusion

Operational flood forecasting is an important problem requiring a scalable high
resolution integrated modeling solution. Our current work presents such an inte-
grated modeling system IFM comprising soil model, and a water routing engine.
In particular, we focus on the routing process, which is the most compute in-
tensive and propose a distributed memory parallelization scheme to scale it up
to large grid sizes. We also present novel partitioning techniques to minimize
load imbalance subject to memory constraints. Empirical evaluation of our pro-
posed approach on large scale real-world domains demonstrates that it scales

IFM: A Scalable High Resolution Flood Modeling Framework 703

well up to 8192 processors, and can enable a number of applications and ser-
vices to be built around flood forecasts that are delivered in a timely fashion.
Though inspired by the constraints of the flood-modeling problem, the proposed
2D-WVM partitioning scheme presents two key ideas that are likely to have
broad applicability in other areas (e.g., computational seismology) that involve
irregular and/or heterogeneous domains and resources constraints: (a) iterative
refinement of partitioning by using information from previous iteration(s) on
partitions that achieve the constraints (b) statistical modeling of the true work-
load of a partition in terms of the constituent grid cell properties.

References

1. 10 costliest floods worldwide ordered by overall losses, http://www.munichre.com/
app pages/www/res/pdf/NatCatService/significant natural catastrophes/

2012/NatCatSERVICE significant floods eco en.pdf

2. Gill, M.A.: Flood routing by the Muskingum method. Journal of Hydrology 36(34),
353–363 (1978)

3. Li, J., Liao, W.K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,
R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A High-Performance
Scientific I/O Interface. In: SC (2003)

4. Malakar, P., et al.: A divide and conquer strategy for scaling weather simulations
with multiple regions of interest. In: SC 2012, pp. 37:1–37:11 (2012)

5. Michalakes, J., et al.: WRF Nature Run. In: SC (2007)
6. Moussa, R., Bocquillon, C.: Algorithms for solving the diffusive wave flood routing

equation. Hydrological Processes 10(1), 105–123 (1996)
7. Neal, J., Fewtrell, T., Trigg, M.: Parallelisation of storage cell flood models using

OpenMP. Environmental Modelling & Software 24(7), 872–877 (2009)
8. Neal, J.C., Fewtrell, T.J., Bates, P.D., Wright, N.G.: A comparison of three paral-

lelisation methods for 2D flood inundation models. Environ. Model. Softw. 25(4),
398–411 (2010)

9. Priestnall, G., Jaafar, J., Duncan, A.: Extracting urban features from LiDAR dig-
ital surface models. Computers, Environment and Urban Systems 24(2) (2000)

10. Sanders, B.F., Schubert, J.E., Detwiler, R.L.: ParBreZo: A parallel, unstructured
grid, Godunov-type, shallow-water code for high-resolution flood inundation mod-
eling at the regional scale. Advances in Water Resources 33(12), 1456–1467 (2010)

11. Singhal, S., Villa Real, L., George, T., Aneja, S., Sabharwal, Y.: A hybrid paral-
lelization approach for high resolution operational flood forecasting. In: HiPC 2013
(2013)

12. Skamarock, W.C., et al.: A description of the Advanced Research WRF version 3.
Tech. Rep. TN-475, NCAR (2008)

13. Todini, E.: The ARNO rainfall runoff model. J. Hydrology 175(14), 339–382 (1996)
14. Vreugdenhil, C.: Numerical Methods for Shallow-Water Flow. NATO Asi Series.

Series C, Mathematical and Physical Science. Springer (1994)
15. Yen, B.: Channel Flow Resistance: Centennial of Manning’s Formula. Water Re-

sources Pub. (1992)
16. Yu, D.: Parallelization of a two-dimensional flood inundation model based on do-

main decomposition. Environmental Modelling & Software 25(8), 935–945 (2010)

http://www.munichre.com/app_pages/www/res/pdf/NatCatService/significant_natural_catastrophes/2012/NatCatSERVICE_significant_floods_eco_en.pdf
http://www.munichre.com/app_pages/www/res/pdf/NatCatService/significant_natural_catastrophes/2012/NatCatSERVICE_significant_floods_eco_en.pdf
http://www.munichre.com/app_pages/www/res/pdf/NatCatService/significant_natural_catastrophes/2012/NatCatSERVICE_significant_floods_eco_en.pdf

	IFM: A Scalable High Resolution Flood Modeling Framework

	1 Introduction
	2 Related Work
	3 Integrated Flood Modeling System
	4 Distributed Memory Parallelization
	5 Domain Partitioning Approaches
	5.1 Two Dimensional Non-uniform Partitioning

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References

