
An I/O Scheduler for Dual-Partitioned Tapes

Lucas C. Villa Real
IBM Research

lucasvr@br.ibm.com

Michael Richmond
Infoblox

mrichmon@acm.org

Brian Biskeborn
Google Inc.

bbiskebo@gmail.com

David Pease
IBM Research

pease@us.ibm.com

Abstract—For a long time, tapes have had a single logical
partition that was efficiently operated by dedicated software
in batch mode. Nowadays, after the introduction of the LTO
5 standard, tapes support logical partitioning and, with the
arrival of the Linear Tape File System (LTFS), their contents
are exposed through the file system interface as regular files
and directories. As a consequence, tape medium can now
be accessed by concurrent processes that may create files in
parallel. This creates two potential problems: interleaved data
blocks and expensive partition switches. This paper presents
the design and implementation of Unified, an I/O scheduler
for LTFS that addresses these problems. We observe the
effectiveness of delayed writes on decreased file fragmentation
and the reduction of partition switches with the use of
buffering and of redundant file copies. We also find out that
software-based read prefetching, commonly used to manage
disk devices, does not improve read times on tapes, but rather
introduces potential overhead. With the techniques described
in this paper, the Unified scheduler allows tape operations to
be performed close to the raw hardware speed.

1. INTRODUCTION

Magnetic tapes have always played an important role in
long term archiving and backup solutions because they are
cost-effective when compared to other storage media [11].
Tapes are also used in combination with high speed devices
in hierarchical storage management systems: data files that
are frequently accessed are kept in memory, or on fast hard
disks, and automatically migrated to and from data tape
according to data access policies [4]. Cloud-based storage
providers [13] and the Large Hadron Collider [1] are two
examples of users of such technology.

Common tape management and backup software [15]
are designed so that sets of files can be transferred to tapes
in a single run. The advantage of that class of software
is that each file can be transferred sequentially to tape,
resulting in optimal block allocation for streaming I/O. Of-
ten a single process manages access to the tape hardware.
That fact, combined with the opportunities to arrange files
sequentially on medium, has caused past research on tape
I/O to focus on scheduling read operations alone so that
reads could be served with a minimum number of tape
seeks.

With the introduction of the POSIX [7] compliant
Linear Tape File System (LTFS) [12], the contents of the
tape are no longer controlled by dedicated applications.
Rather, they are exposed to the user through the operating
system’s file system interface. By doing so, users can use
tapes just like hard disk or external mass storage devices,
performing drag and drop operations and using existing

desktop applications to concurrently read from / write
to tape in many unpredictable ways. Consequently, LTFS
needs to employ scheduling strategies for situations that
previous generations of tape software did not have to deal
with.

Moreover, modern enterprise tape systems, beginning
with the 5th generation of the Linear Tape-Open (LTO)
specification [6], have the ability to segment tapes into two
(or more) separate partitions where applications can read
from and write to. A consequence of supporting writes to
different partitions is that the performance of applications
can be degraded due to the expensive tape head movements
and longitudinal seeks to locate the data blocks on the
different partitions. LTFS is the first file system to support
logical partitioning on modern tapes, which means that
this is one of the first studies on optimizing tape partition
switches.

In this paper we present the design of Unified, an
I/O scheduler for LTFS, which is, to the best of our
knowledge, the first one designed to optimize performance
for on-line access to dual-partitioned tapes. Since tape
systems are commonly overlooked in today’s world of
memory-based storage devices, we begin Section 2 by
providing background on how modern tapes are designed,
with emphasis on how logical partitioning works. Fol-
lowing that, we describe our aims and objectives with
Unified as part of Section 3. Next, Section 4 presents a
study of prior work that we took into consideration when
looking into improving the performance of LTFS. The
architecture of the I/O scheduler is given in Section 5,
including annotations about this paper’s main contributions.
Section 6 then presents an analysis of the performance
gains obtained by asynchronous writes and the effect of
delayed operations, buffering, and redundant file copies
on the spatial arrangement of files and on savings to the
number of partition switches. Our results are compared
against the First-Come, First-Served scheduler available
on LTFS. We also investigate a prefetching technique
commonly adopted by disk I/O schedulers and discuss
about its drawbacks when applied to software-based tape
I/O schedulers. Section 7 draws our conclusions and makes
final remarks.

2. TAPE DESIGN

A partition in an LTO tape is defined as a sequence of
wraps that run through the entire length of the data tape.
Each wrap has a direction: it can run from the begin of tape
to the end of tape or the other way round. A sequential
write operation is performed in a serpentine pattern that

Fig. 1: LTO-5 track recording in a dual-partitioned tape.

follows the directions of the wraps. The first wrap is written
while running the tape forward; the second wrap is written
while the tape is run backwards; the third wrap is written
while the tape runs forward, and so on.

Data writes to LTO tapes are done through a technology
called Shingled Magnetic Recording (SMR) [8]. The idea
behind SMR is to partially overlap previous wraps on new
writes so that the written “bits” occupy the minimum wrap
(or track) size possible, thus leading to increased storage
density. The way in which tape drives implement SMR is
by applying a high power current to the write head that
not only affects the currently positioned wrap but also the
adjacent wraps. That is, writing to a wrap N will partially
overlap the previous wrap N−1 and also affect any existing
data at the next wrap N + 1.

A. Tape partitions

Due to the use of Shingled Magnetic Recording, a
write operation on a single-partitioned tape causes all data
following the written logical block address to be deleted
– after all, the contents of the next wrap will be partially
overwritten by that operation.

With LTO 5 onwards, it is possible to segment tapes
into different logical partitions that support independent
write operations without altering the data stored on any
other partition. That is possible through the use of buffer or
guard wraps that serve as a physical boundary to separate
partitions. Then, writes to the last wrap of a partition P
only interferes with the guard wrap that separates it from
partition P +1, thus guaranteeing data integrity of P +1’s
first wrap. Likewise, writes to the first wrap of P + 1 do
not affect P ’s last wrap.

Logical partitioning is restricted to the section on tape
reserved for user data. The remaining sections near the
beginning and end of the tape are reserved by the drive
for housekeeping and calibration and are not subject to
the partition split. This organization is shown in Figure 1,
which depicts a dual-partitioned tape.

B. Partitions in LTFS

In the LTFS tape format, the physical media is divided
into two logical partitions in accordance with the LTO
specification.

The first partition is primarily used to store the LTFS
Indexes that represent the filesystem metadata for the
volume. In that partition, small files can be optionally
stored according to data placement rules determined at
format or mount time – users can, for example, configure
a tape so that metadata files smaller than 2MiB and with
names ending on ‘.XML’ are always copied to the Index
Partition. The advantage of having a few selected small
files on that partition is that, in general, they will be close
to the beginning of tape and to the LTFS Index, making it
possible to quickly retrieve their contents.

The second partition is significantly larger than the
former and is used as the primary location for file storage
on the volume.

C. Data extents

A data extent is a set of one or more sequential logical
blocks used to store file data. In LTFS, all blocks within a
data extent have a fixed size (determined at format time)
except for the last block, which may be smaller. The data
arrangement of a file on an LTFS tape is described by
extent lists containing information such as the partition
where each extent resides, its starting tape block number, its
size in bytes, and the corresponding logical file offset [19].

The fewer extents a file has, the smaller its represen-
tation in the LTFS Index. Additionally, a file with fewer
extents will incur fewer tape seeks during access, resulting
in a more efficient access pattern to read the file data back
from tape.

3. AIMS AND OBJECTIVES

Due to their longevity and cost-effectiveness, tapes
are often the industry’s choice for long-term archiving.
A nearly 20-year study on evolutionary archival trends
of scientific and historical long-term data indicates that
workloads have shifted in the past few years from read-
dominated operations towards write-heavy ones [3]. That
analysis suggests that current archival storage systems
could be more optimized for write activities, which is the
main topic of this paper as well as Unified scheduler’s
major aim.

Concerning the dual-partitioning of tapes, the motiva-
tion for designing Unified is to lower the large delays
caused by partition switches [20] when writing to tape.
Although the LTFS specification does not require imple-
mentations to support writing user data to both partitions,
all major LTFS software distributions do so. Through
data placement rules [19] users indicate which files can
be stored on the first partition (named Index Partition,
or IP for short) and their maximum allowed size. With
a specialized I/O scheduler, we expect to minimize the
number of partition switches demanded by that feature
while preventing the Index Partition from becoming too
full.

Next, being supported on three contemporary multi-user
operating systems (Linux, Windows, and Mac OS X), it is
important for an LTFS I/O scheduler to treat concurrent
access to the tape in a fair manner. We focus our design so

2

that parallel write requests can be efficiently orchestrated,
with the objective of reducing data block fragmentation.

Moreover, the file system interface utilized by LTFS
on Linux may translate single large write requests into
multiple synchronous writes of smaller sizes to the LTFS
user space process. By doing so, the Linux kernel reduces
the number of dirty memory pages that it needs to hold
before the user space file system writes them down [14].
Hence, to achieve maximum throughput, the architecture of
the I/O scheduler needs to include mechanisms that handle
writes asynchronously. The same is not necessary for reads,
as discussed in Section 5.5.

Last, data blocks in LTFS are always written to the
end of the selected partition. This append-only constraint is
imposed by the characteristics of tape media and simplifies
the design of Unified: data blocks from deleted files cannot
be recycled by the file system on subsequent write opera-
tions. Therefore, all optimizations related to file writes are
focused on data appends at the tape media.

4. RELATED WORK

This section presents related work on tape I/O schedul-
ing. We note that even though tapes have been around for
a very long time, there are few studies in that area. One
of the possible reasons is that tape management software
frequently operates as an interface for transferring fixed
lists of files from disk to the tape and back. By doing
so, the software can operate the medium in batch mode
and significantly reduce the complexity and cost of its
implementation. Nevertheless, some interesting techniques
found in the literature can be still applied to dynamic I/O
scheduling of requests to tapes.

A. Tape reads

Several studies in the literature aim to improve reads
on serpentine tapes. Some authors have proposed mathe-
matical models that estimate the seek times for random
accesses to the tape medium [5]. These estimates are then
used to create algorithms that consider the tape layout when
scheduling reads [17].

The seek time between two positions on a tape is
determined by four factors: (a) the longitudinal distance
between the source and destination positions, (b) the need
for a track change, (c) the need to change winding di-
rection, and (d) whether locating the closest key point1
on tape influences the seek. Sandstå and Midtstraum [16]
propose a generic model that can estimate the cost of
seeks based on these factors for a given sequence of block
addresses. The inconvenience of that method is that low
level information about the tape layout needs to be input
by the user, otherwise cost estimates can be wrong. Even if
that process is automated through software, the time spent
doing the characterization of the tape can be very long,
which makes it prohibitive to integrate this model in a file
system meant for production environments.

1The tape drive maintains a set of evenly-spaced reference points that
are sought before the requested data block address can be located.

In a study to optimize the throughput of data restore
from tapes, Schaeffer and Casanova [18] implemented
TReqS, a scheduling system placed in front of a hier-
archical storage mananagement (HSM) that queues read
requests from files. Inside that queue, requests are sorted
according to their physical position on tape (given by the
underlying HSM). If a read request is received while HSM
is processing a queue, then that request’s block address
is compared against the tape’s current position. If the
tape position is greater than the requested block address,
then that request is put on a new queue that is processed
later. That condition guarantees that the tape always moves
sequentially when serving requests from a given queue and
that the drive only rewinds the tape when the new queue is
activated. We adopted the same strategy of serving reads
based on the associated block addresses in the Unified
scheduler.

B. Tape writes

To improve the performance of writing small files to
tape, Murray et al. [10] proposed modifications to the
CASTOR storage manager system that runs at CERN. That
system stores a file on tape by surrounding the actual file
data with three special tape marks2. Differently from a
regular data byte written to tape, a tape mark is written
using a particular SCSI command that also causes the tape
drive to flush all outstanding buffers to the medium [2].
In the system evaluated by Murray’s team, the cost of
writing a tape mark was of 1.7 seconds, on average —
meaning that about 5 seconds would be spent syncing
buffers when writing the 3 tape marks next to a new file.
Their proposal was to introduce a new Linux system call
to the SCSI tape driver that writes a tape mark without
forcing a subsequent flush operation. Their legacy software
has then been modified in a way that only the last of the
3 tape marks written would trigger a flush.

When writing the LTFS specification, we determined
that tape marks would not be used to delineate the location
of files, but rather to determine the locations of the LTFS
Indexes. Because these Indexes are important to assert a
consistent file system view, it is critical to flush outstanding
buffers when writing a tape mark. In order to achieve
a compromise between data protection and performance,
LTFS provides three policies to control how often the Index
is flushed to tape. In the first, the flush is programmed
to occur when a file opened for writing is closed. In the
second, a timer determines how often to save the Index
if changes to the tape’s contents have been made. In the
third, the LTFS Index is flushed only when the filesystem
is unmounted.

Other authors have focused on determining data place-
ment strategies for tertiary storage on hierarchical storage
management environments (HSM). Li and Prabhakar [9]
have developed probability functions that estimate the
relationships between file objects on a primary or sec-
ondary storage. Once objects with a strong connection

2Tape marks are special in the sense that the drive can be programmed
to seek at high speed to the next or previous mark. For that reason, they
are frequently used to delineate the beginning of new contents on tape.

3

are identified, they can be migrated to the same tertiary
storage (tape) medium. The rationale behind this approach
is that by grouping files based on their relationship the
cost of future read and seek operations will be reduced.
Given the heterogeneity of the environments in which the
Unified scheduler is expected to be used, we deliberately
chose not to make assumptions about anticipated workloads
or inter-data dependencies (which, in fact, may not be
easily determined on non-HSM environments). Instead, we
focus on reducing file fragmentation, which also leads to
improved read times3. Section 6 holds details about the
gains obtained when reading back scattered files written
with and without special treatment for fragmentation.

5. I/O SCHEDULER DESIGN

In this section we describe the design of the Unified
I/O scheduler, which is implemented as a loadable module
in the user-space LTFS software stack. Sections 5.1 and
5.2 introduce essential data structures that our design
relies on. The core novelties introduced by this article
are presented in Section 5.3: (1) the use of redundant file
copies combined with delayed writes, employed to reduce
the number of partition switches and catch outliers, and (2)
an effective caching management, used to reduce internal
file fragmentation.

A. Request cache objects

The request cache object (RCO) is a fixed-size data
structure that holds outstanding data written to LTFS. Its
size is defined to match the low-level tape block size so that
optimum efficiency is reached when flushing a file’s list of
RCO entries to tape. The RCO has three major members:
the logical file offset where the data must be written, the
size of the data it holds, and its state, which can be one of
the following:

• PARTIAL: the RCO buffer is not full;

• DATA_PARTITION: the RCO buffer is fully uti-
lized and is ready to be written to the Data
Partition;

• INDEX_PARTITION: the RCO buffer is fully
utilized, has already been written to the Data
Partition and is now waiting to be written to the
Index Partition.

Fig. 2: Transitions and states of a request cache object.

3LTFS runs on a variety of HSM stacks that could still group files
according to user policies before submitting them to tape through the
Unified scheduler.

Fig. 3: Management of request cache objects and the
Unified queues.

Figure 2 shows the possible states and transitions that
a RCO can make. The transition from DATA_PARTI-
TION to PARTIAL can only happen on a file truncation
operation that affects an RCO which was previously fully
utilized. The inverse transition is made when more contents
are appended to the RCO buffer causing it to become
full. On the other hand, once an RCO state is set to
INDEX_PARTITION it never changes – the RCO is either
written to tape or removed from the file’s RCO list if it no
longer needs to be written to that partition. Finally, at most
one RCO of a given file can be in PARTIAL state, in which
case it will be found at the end of that file’s RCO list.

B. Queue Membership

Unified manages outstanding requests with the assis-
tance of three queues that provide efficient access to files
that have dirty data4. At any time, a file can be a member
of zero or more queues, depending on how many RCOs
of that file are queued for writing and on whether the file
meets the Index Partition data placement rules of that tape
or not.

The first queue, called “Working Set”, points to files
that have partial requests. That is the case of files A and
B in Figure 3. The second queue is the “Data Partition”
queue, whose members are files that have at least one full
request. The “Index Partition” queue holds pointers to files
that satisfy the data placement rules for being written to the
Index Partition. The example depicted in Figure 3 shows
no files fulfilling that rule.

C. Write operations

Optimizing write operations is key to fully exploit the
streaming capabilities of tape hardware. Unified handles
these operations by queueing writes in the request lists and
by regulating the conditions in which the data is flushed to
tape.

4Data that was written by the application but not yet written to the
medium.

4

The scheduler implementation uses insertion sort to
arrange the RCO entries of a file according to their starting
offset. The traditional insertion sort algorithm has been
slightly optimized to benefit sequential operations: if the
offset passed by a write call is beyond the end (given
by the last entry on that list) then the request is simply
appended to the list with no need for complete traversal.
This optimization provides our insertion sort algorithm an
O(1) complexity on streaming writes.

The write algorithm also deals with overlapping ad-
dresses in the cached objects. If an RCO already holds one
or more bytes of data starting at the offset passed by a new
write call, then that RCO’s data blocks at the overlapped
addresses are superseded by the new data. Any extra bytes
that will not fit in the updated cache object are then either
merged with the next object in the linked list or placed in
a new PARTIAL cache object.

Unified employs a dedicated writer thread to control
requests that are ready to be moved from the cache objects
to the medium. The writer thread is critical to the per-
formance of the file system. Consequently, there are four
circumstances in which the writer thread awakes to process
outstanding requests:

1. Explicit file flushes: To satisfy the predictability ex-
pected by some applications, the fsync system call always
ensures that all outstanding buffers of the corresponding
file are flushed to tape.

2. Fully utilized RCOs: When the first RCO
in a request list changes state from PARTIAL to
DATA_PARTITION the writer thread is woken to prepare
for potential data bursts. The list of RCOs of each file
belonging to the Data Partition queue is searched by that
thread and any requests with the state DATA_PARTITION
are written to tape. Afterwards, the file is removed from
the Data Partition queue.

Next, if the file meets the Index Partition criteria, then
the processed requests are changed to state INDEX_PAR-
TITION and the file is added to Unified’s Index Partition
queue. The processing of data written to the Index Partition
is detailed below.

This exposes one key aspect of the I/O scheduler’s
design: even when a file matches the criteria to be saved to
the Index Partition, it is still written to the Data Partition.
There are three related reasons for this design. First,
alternating between partitions on tape is expensive due to
seek delays. Second, by indefinitely postponing data writes,
events like power outage may lead to data loss if no data
blocks from a file ever met the tape; by writing these
blocks to the Data Partition, we are protected against such
problems. Third, it is possible to catch outliers — files
that were subject to the Index Partition placement policy
but that have grown beyond the size allowed by that policy.
These should not benefit from the privileged storage in the
Index Partition.

Moreover, by flushing data to tape one file at a time, we
reduce file fragmentation when there are concurrent write
requests for different files. Because many cached buffers

from a given file are written at once, large file extents
can be produced. That translates to more compact LTFS
Indexes and to more efficient read operations.

3. Cache pressure: When the number of RCOs in
use reaches the maximum value established for the current
LTFS instance, Unified enters a cache pressure mode. All
incoming write requests are put on hold until some of the
pending write requests are flushed to the medium.

Under cache pressure, Unified always tries to free
at least twice as many cache objects as there are
blocked writer threads. It first checks for requests in state
DATA_PARTITION that are not eligible for placement
in the Index Partition. If there are enough of these, the
scheduler flushes the Data Partition queue and returns.
This avoids inefficient partial-block writes or a costly Index
Partition seek.

If the condition above is not satisfied, Unified checks
the number of requests in INDEX_PARTITION state
against a high water mark. If the high water mark has been
reached, the scheduler flushes the Index Partition queue.
Otherwise, it flushes both the Data Partition and Working
Set queues, writing all eligible blocks (including partial
sized ones) to the Data Partition.

4. File system unmount: In this case, the
writer thread first writes RCOs whose state are either
DATA_PARTITION or PARTIAL to tape (see Figure 4a).
Those RCOs that are marked for writing to the Index
Partition have their state changed to INDEX_PARTITION
thereafter and are written to tape together with other RCOs
that share that same state (Figure 4b).

D. File synchronization

Having support for asynchronous writes in the file
system has one major implication for applications: they
may not have a chance to get a notification from the file
system if an error condition has been raised after a write
operation. Since the write call returns immediately after
submitting its data buffers to the I/O scheduler’s queue, I/O
errors associated with these requests may be only detected
long afterwards.

To let applications become aware of file I/O problems,
the close system call has been made synchronous for files
that were either created or updated. Any queued entries
in the request list of the file are processed, and errors, if
any, are propagated through the return of that system call.
The synchronization process on close is the same one
performed by Unified on an explicit fsync.

E. Read operations

Reading files through Unified may benefit from the
RCOs of a file. If the data asked for is completely cached
in the RCOs, then the requested can be served without
involving access to the tape medium. If it is not, then the
scheduler queues up reads from tape to get the missing
data. Similarly to write requests, queued up reads are sorted
by the logical file offset to enable sequential tape reads.

5

(a) Flush of the Data Partition and the Working Set queues

(b) Flush of requests that migrated to the Index Partition queue

Fig. 4: Unified queue flushes.

Many file systems offer some level of prefetching when
reading data from the medium. We have analyzed two
approaches to prefetching in LTFS: file-based and block-
based.

File-based prefetching is implicitly performed by
stream-based operations that utilize buffered I/O. That is
the case of the fread and fwrite family of functions.
The drawback with that approach is that there are situations
in which the file extents on tape are interleaved with extents
from other files. If parallel reads are issued for two such
files, then seeking the tape forwards to prefetch data for

one file may cause tape backhitch5 when data for the other
file is demanded.

Block-based prefetching, on the other hand, has the
potential to improve performance in two situations. First,
by asking more data to the drive than requested by the
application, it is possible to sustain faster streaming rates.
Second, it can save expensive backwards seeks when files
with interleaved extents are read together, as long as the
prefetching window is large enough.

Since tape drives are optimized for streaming I/O, the
hardware normally keeps reading ahead until the applica-
tion stops requesting to pull more data. Depending on the
caching strategies implemented by the hardware, however,
it is possible that data blocks at smaller addresses than the
current tape position are no longer in that cache. Therefore,
we investigate block-level prefetching as a way to optimize
that situation alone.

Support for block-level prefetching has been imple-
mented in the LTFS tape driver layer, which is the lowest
layer of the LTFS software stack. That layer’s main duty
is to issue low level SCSI commands that drive the tape
hardware via the operating system. A number of sequen-
tially prefetched blocks are stored in a cache within that
layer. When an application asks to read from tape, the
requested file offset is translated to a block address and,
if that address happens to be in cache, then a tape I/O is
avoided. Our evaluation of block prefetching is presented
in the next section of this paper.

6. PERFORMANCE ANALYSIS

In this section we investigate to which extent the
features introduced by Unified improve LTFS and examine
why certain mechanisms have failed to show good results.
We use synthetic workloads that reproduce the behavior of
having a user drag-and-dropping several files to the LTFS
mount point and of having applications reading back these
files from tape (as is often the case of anti-virus software
when several files may be scanned in parallel).

Our evaluation of the performance gains analyzes four
aspects that directly impact LTFS efficiency: (1) the place-
ment of extents in tape medium, (2) streaming reads and
writes to tape, (3) reading two or more files with interleaved
extents, and (4) the effect of deferred Index Partition writes
on throughput.

We compare the results obtained with the stock First-
Come, First-Served (FCFS) scheduler available on LTFS
using metrics like throughput, the number of data extents
allocated per file, and the number of seconds spent on I/O.

Environment

The sequential read and write throughput of LTFS is
measured using an IBM LTO-5 tape drive, attached via
SAS to a modern server class machine running Linux
kernel 3.14.1. The tape drive in question is rated for a
maximum throughput of 140 MiB/second, excluding the

5The repeated motion made by the tape drive when seeking back and
forth.

6

effects of hardware compression (which was disabled for
testing). The same class of hardware is driven by Linux
2.6.18 in our data placement experiments. Parallel I/O
operations are measured on the same class of tape drive
on an Intel Xeon E5530 machine with two Quad Core
processors that expose a total of 16 logical processing units.

A. Placement of file extents on tape

In this scenario we evaluate the number of data extents
created and their sizes when writing to files in parallel. In
our test, the writes issued by the application reach LTFS
in blocks with a maximum size of 128 KiB, which is
determined by the Linux FUSE driver. Due to the diver-
gence between that size and the tape block size, extents
of sub-optimal, fixed sizes are created when writes are
orchestrated by the FSFS scheduler, as shown in Figure 5a.
In this first experiment, the data blocks of each file created
are distributed over an average of 277 extents, with a
standard deviation of 3.

The same process is repeated with the Unified sched-
uler, resulting in a reduction to an average of 4 extents
per file with a standard deviation of 0.75. By visually
inspecting the placement of file blocks (Figure 5b) we
observe two details of the initial implementation of our
scheduler:

1) The first extents written to tape are small. This
is a consequence of waking up the writer thread
as soon as a complete cache object is full: when
there are too few requests on the request lists,
small extents may be produced. We approach this
problem by deferring writes until a minimum
number of requests are queued.

2) The majority of extents are very large. Once
continuous data flows start to arrive at the I/O
scheduler, a substantial number of cache objects
accumulate in the request lists and coalesced
writes are possible, resulting in extents of greater
size.

The fifth row of Figure 5a, toward the left edge, also
shows a sequence of 11 contiguous blocks belonging to
File G. That layout differs from the distribution of blocks
of the other files and suggests that other writers may
have been starved of access to the media during this
period of execution. This starvation is an artifact of task
scheduling by the kernel. Our introduction of asynchronous
I/O operations afforded by Unified masks these kinds of
task scheduling artifacts from the tasks performing I/O to
LTFS.

B. Scattered reads

We evaluate two scenarios to gauge the impact of
spatial distribution of file extents on write throughput. In
both scenarios we measure the throughput by reading 10
files that had been previously written in parallel to the tape.

In the first scenario, the files are written with the LTFS
FCFS algorithm which produces 4498 extents per file,
on average, with a fixed size of 128KiB. In the second

File A extents
File B extents
File C extents

File D extents
File E extents
File F extents

File G extents
File H extents
File I extents

File J extents

(a) Data extents with no I/O schedulers loaded

File A extents
File B extents
File C extents

File D extents
File E extents
File F extents

File G extents
File H extents
File I extents

File J extents

(b) Data extents produced with the Unified I/O scheduler

Fig. 5: Data placement of different files written in parallel
on LTFS. File extent sizes are shown in the X axis. Several
lines are used due to space restriction.

scenario, files are written through the I/O scheduler which
produces an average of 76 extents per file with a standard
deviation of 11. The average size of each extent is of
7.7MiB.

Figure 6 shows 10 files (named from A to J) grouped
in pairs. The vertical bars on the left of each pair represent
the time to read the files produced with the FCFS policy;
the bars on the right hand side represent the elapsed time
while reading files written by Unified. Further, each vertical
bar is split in two, with the CPU time of the read process
being depicted at the bottom and the I/O time on top. All
reads are performed with the I/O scheduler disabled to turn
off buffering at the file system level.

As expected, the CPU time is mostly the same across
different runs. The difference in I/O time, on the other
hand, clearly shows the gains obtained by the aggregated
writes of our scheduler.

C. Sequential throughput

For each test run, the GNU dd utility is used to either
read or write 2 GiB of data in two iterations of 1 GiB
each. The first iteration is used to force the tape drive to
start moving, and throughput is measured on the second
iteration. I/O size is varied from 1 KiB to 64 KiB, and the
mean measured throughput from 10 runs is taken at each
size, ignoring any data points where the tape drive reaches
the end of the tape and turns around (a known source of
reduced throughput). For read testing, the kernel’s buffer
cache is cleared before each run.

Results are presented in Figure 7. Write throughput

7

Fig. 6: Time to read back scattered extents from 10 files
of 500MB each.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

I/O size (KiB)

Unified scheduler
No scheduler

Fig. 7: Write throughput versus I/O size with and without
the I/O scheduler.

without an I/O scheduler in LTFS requires 32 KiB writes
to reach the limits of the hardware. Turning on the I/O
scheduler enables full throughput with 8 KiB writes, with
increased throughput compared to the no-scheduler case at
smaller I/O sizes. Reduced throughput at lower I/O sizes
is likely explained by the need to perform a context switch
to the LTFS process for every request. Error bars for the
measurements are too small to show on the plot, with a
measured standard deviation of 3 MiB/s or less at all I/O
sizes.

Read throughput consistently reaches 136 MiB/s re-
gardless of I/O size and is not plotted.

D. Reading files with interleaved extents

In this scenario we measure the total time required to
read a sequence of 200 files of 10MiB each. Every file
features two discontiguous extents that are interleaved with
the the first extent of the next file. Two prefetching strate-
gies are evaluated: (1) look-ahead and (2) a combination of
look-ahead with look-behind (in which prefetching actually
starts before the block address requested by the user).

The first test compares the performance of no prefetch-
ing against different read-aheads setups, whose results can
be seen in Figure 8. The configuration with 12 threads

Fig. 8: Block prefetching times with different look-ahead
configurations and number of parallel read threads.

shows a considerable performance degradation due to the
excessive number of active threads at a time: besides
the reader tasks, there are several FUSE threads serving
requests from these tasks, plus the LTFS process. The
remaining configurations, especially the one with a single
thread, do not benefit from prefetching: as the tape hard-
ware employs this same type of optimization, prefetching
in software not only shows no gains but may even introduce
overhead to the file system. That is clearly reflected by the
run with 2 threads.

Motivated by the reasoning that commercial tape drives
do not implement look-behind, we evaluate the combina-
tion of look-behind and look-ahead prefetching. Due to the
performance degradation observed with 12 threads on the
previous test, that configuration is not evaluated this time.
Two combinations of prefetching are used. In one, 50% of
blocks are read behind the requested address followed by
50% of blocks being read ahead of it. In the other, that
ratio is changed to 75% and 25%.

The results shown in Figure 9 indicate that prefetching
is highly sensitive to the number of blocks chosen, as the
configuration with 50 blocks attests. With an increase in
the number of blocks prefetched, the chance of resource
contention elevates and may increase the length of tape
that other threads need to run on seeks. Also, as indicated
by the configuration with 8 threads, the arrangement of
the files used in the test do not gain real benefits from
prefetching.

Based on the numbers obtained in this study, we
come to two conclusions. First, due to tape hardware
optimizations, software-based look-ahead prefetching does
not translate to tape read improvements. Second, while the
combination of look-behind and look-ahead may sound
appealing, only certain file arrangement combined with
particular access patterns may benefit from it, granted that
the right choice of number of blocks to prefetch is used.

8

Fig. 9: Block prefetching times with look-behind and look-
ahead configurations.

E. Deferred Index Partition writes

The effect of deferred Index Partition writes is demon-
strated by varying the scheduler’s cache size. Cache size
control is a standard feature of our LTFS implementation.
In each test, 1000 files of 10 MiB each are written to the
tape, with 10 of these files matching the Index Partition
placement criteria set at mount time. The total size of
Index Partition blocks is therefore 100 MiB, larger than
the scheduler’s default cache size of 50 MiB. The fsync
system call is invoked on every file before it is closed, so at
any given time the scheduler’s cache should contain blocks
bound for the Index Partition plus at most 10 MiB of Data
Partition writes.

With the default cache settings, writing all 1000 files
takes 159 seconds, for an average throughput of 63 MiB/s.
Increasing the cache size to 1 GiB decreases the write time
to 82 seconds, for an average throughput of 122 MiB/s.
This number is still lower than the sequential throughput
reported in the subsection above because this experiment
does not control for tape drive start/stop time.

With the larger cache, all Index Partition writes are
deferred until the tape is unmounted. Since the data placed
on the Index Partition should be very small to reduce read
access time (e.g. 1 GiB or less), increasing the cache size
to prevent Index Partition flushes is a reasonable choice.

7. CONCLUSION

In this paper, we have detailed the design and operation
of Unified, an I/O scheduler for dual-partitioned magnetic
tape media, and evaluated several optimization techniques
to address situations that former tape management software
did not have to handle. The outcome of this work is a set
of recommendations for optimizing on-line I/O on tapes
and on other log-structured file systems.

A novel contribution of this paper relates to the man-
agement of dual-partitioned tapes. We realize that the costs
incurred by interleaved writes to different partitions is
addressed by letting all data blocks of a file land on the

Data Partition first. Then, by delaying seeks to the Index
Partition our scheduler is able to: (1) catch outliers that no
longer meet the data placement criteria, (2) dramatically
improve write throughput of small files, and (3) reduce the
risk of data loss caused by deferred writes.

We observe that internal file fragmentation caused by
parallel writes to tapes can be significantly reduced by
the use of simple buffering techniques. In Unified, we
developed a sophisticated in-memory data cache managed
at the file level that allows the scheduler to coalesce data
writes, leading to the creation of larger data extents on
the tape media and to more efficient use of SCSI I/O
operations. Our performance evaluations show that these
techniques allow file-system read/write operations at data
rates close to the speed of the raw tape hardware. Further,
We believe that this optimization may also benefit other
storage media such as disk-based devices.

A related benefit provided by buffering is that I/O
operations from user tasks are not exposed to scheduling
artifacts that result from the kernel task scheduler. Because
outstanding write requests are delayed and grouped on a
per-file basis, such artifacts are masked.

We also find that block-based prefetching, which is
commonly used by disk I/O schedulers to improve reads of
data near the last blocks accessed, does not bring the same
benefits to tapes when that functionality is already present
on tape hardware. Read-behind prefetching, although not
implemented by the tape drives used in our evaluation,
turn out to cause the prefetcher to hold the tape for more
time than needed, potentially introducing more overhead to
parallel operations in the file system.

The main findings presented in this paper and the im-
plementation of the Unified scheduler have been integrated
in the open source LTFS software for single tape drives that
is used by several companies who offer LTFS solutions.

REFERENCES

[1] A Cavalli, L dell’Agnello, A Ghiselli, D Gregori,
L Magnoni, B Martelli, M Mazzucato, A Prosperini,
P P Ricci, E Ronchieri, V Sapunenko, V Vagnoni,
D Vitlacil, and R Zappi. StoRM-GPFS-TSM: A new
approach to hierarchical storage management for the
LHC experiments. Journal of Physics: Conference
Series, 219(7):072030, 2010.

[2] Gary Field and Peter M Ridge. The Book of SCSI.
No Starch Press, 555 De Haro St., Suite 250. San
Francisco, CA 94107, 2nd edition, Jun 2000.

[3] Joel C Frank, Ethan L Miller, Ian F Adams, and
Daniel C Rosenthal. Evolutionary trends in a super-
computing tertiary storage environment. In Modeling,
Analysis & Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2012 IEEE 20th
International Symposium on, pages 411–419. IEEE,
2012.

[4] S. Ghandeharizadeh and C. Shahabi. On multime-
dia repositories, personal computers, and hierarchical
storage systems. In Proceedings of the Second ACM

9

International Conference on Multimedia, MULTIME-
DIA ’94, pages 407–416, New York, NY, USA, 1994.
ACM.

[5] Bruce K Hillyer and Avi Silberschatz. On the mod-
eling and performance characteristics of a serpentine
tape drive. In ACM SIGMETRICS Performance Eval-
uation Review, volume 24, pages 170–179. ACM,
1996.

[6] IBM Corporation. IBM TotalStorage LTO Ultrium
tape drive: SCSI reference, Second edition, Feb 2013.

[7] IEEE. IEEE Standard for Information Technology:
Portable Operating Sytem Interface (POSIX). Part 1:
System Interface. IEEE Standards Association, 1109
Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 2001.

[8] G.A. Jaquette. LTO: A better format for mid-range
tape. IBM Journal of Research and Development,
47(4):429–444, July 2003.

[9] Jiangtao Li and Sunil Prabhakar. Data placement
for tertiary storage. In Tenth Goddard Conference
on Mass Storage Systems and Technologies: in co-
operation with the Nineteenth IEEE Symposium on
Mass Storage Systems, volume 2002, pages 193–
208. National Aeronautics and Space Administration,
Goddard Space Flight Center, 2002.

[10] S Murray, V Bahyl, G Cancio, E Cano, V Kotlyar,
G Lo Presti, G Lo Re, and S Ponce. Tape write-
efficiency improvements in CASTOR. Journal of
Physics: Conference Series, 396(4):042042, 2012.

[11] Henry Newman. The Tape Advantage: Benefits of
Tape over Disk in Storage Applications, Apr 2008.
White paper, Instrumental.

[12] David Pease, Arnon Amir, Lucas Villa Real, Brian
Biskeborn, Michael Richmond, and Atsushi Abe. The
Linear Tape File System. In Mohammed G. Khatib,
Xubin He, and Michael Factor, editors, MSST, pages

1–8. IEEE Computer Society, 2010.
[13] Varun Prakash, Xi Zhao, Yuanfeng Wen, and Weidong

Shi. Back to the future: Using magnetic tapes in cloud
based storage infrastructures. In David M. Eyers and
Karsten Schwan, editors, Middleware, volume 8275
of Lecture Notes in Computer Science, pages 328–
347. Springer, 2013.

[14] Aditya Rajgarhia and Ashish Gehani. Performance
and extension of user space file systems. In Pro-
ceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 206–213, New York, NY,
USA, 2010. ACM.

[15] Rainer Richter. LTFS hits the mark in Media &
Entertainment: An in-depth introduction to LTFS for
digital media, Jun 2012.

[16] O. Sandstå and R. Midtstraum. Improving the access
time performance of serpentine tape drives. In Data
Engineering, 1999. Proceedings., 15th International
Conference on, pages 542–551, Mar 1999.

[17] Olav Sandstå, Thomas Maukon Andersen, Roger
Midtstraum, and Rune Sætre. Access time modeling
of a MLR1 tape drive. In Proceedings of Norsk
Informatikkonferanse, Voss, Norway, pages 267–278,
Nov 1997.

[18] Jonathan Schaeffer and Andrs Gmez Casanova.
TReqS: The Tape REQuest Scheduler. Journal of
Physics: Conference Series, 331(4):042040, 2011.

[19] Storage Networking Industry Association (SNIA).
Linear Tape File System (LTFS) format specification,
Dec 2013. LTFS Format Version 2.2.0.

[20] JieBing Yu and David J DeWitt. Processing satellite
images on tertiary storage: A study of the impact of
tile size on performance. In Proceedings of the 1996
NASA Conference on Mass Storage Systems, pages
460–476, Sep 1996.

10

