
Taxonomy of Package Management
in Programming Languages and Operating Systems

Hisham Muhammad
Kong Inc.

hisham@konghq.com

Lucas C. Villa Real
IBM Research

lucasvr@br.ibm.com

Michael Homer
Victoria University of Wellington -

Wellington, New Zealand
mwh@ecs.vuw.ac.nz

Abstract
Package management is instrumental for programming lan-
guages and operating systems, and yet it is neglected by both
areas as an implementation detail. For this reason, it lacks the
same kind of conceptual organization: we lack terminology
to classify them or to reason about their design trade-offs. In
this paper, we share our experience in both OS and language-
specific package manager development, categorizing families
of package managers and discussing their design implications
beyond particular implementations. We also identify possibil-
ities in the still largely unexplored area of package manager
interoperability.

Keywords package management, operating systems, module
systems, filesystem hierarchy

1 Introduction
Package managers are programs that map relations between
files and packages (which correspond to sets of files), and
between packages (dependencies), allowing users to perform
maintenance of their systems in terms of packages rather than
at the level of individual files. Package management is an
area that lies somewhere in the border between programming
languages and operating systems: packaging is a step that
sits after a language’s build process, and before an operating
system’s component installation. For this reason, it seems
to be overlooked by both fields as an implementation issue.
In the meantime, package management keeps growing in
complexity. New languages, new deployment models, and
new portability requirements all give rise to new package
management systems. Further, this is not simply a matter of
competing implementations: modern complex environments
often require several package managers to be used in tandem.

For example, when writing JavaScript web applications on
a Mac environment, a developer may require using Bower
[1], a package manager for client-side JavaScript compo-
nents. Bower is installed using npm [2], a package manager

PLOS ’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in PLOS ’19: Workshop on Programming Languages and Operating Systems,
October 27, 2019, Huntsville, ON, Canada, https://doi.org/10.1145/3365137.
3365402.

for node.js [3], a JavaScript environment. On a Mac system,
the typical way to install command-line tools such as npm
is via either Homebrew [4] or MacPorts [5], the two most
popular general-purpose package managers for macOS. This
is not a deliberately contrived example; it is the regular way
to install development modules for a popular language in a
modern platform.

The combinations of package managers change as we move
to a different operating system or use a different language.
Learning one’s way through a new language or system, nowa-
days, includes learning one or more packaging environments.
As a developer of modules, this includes not only using pack-
age managers but also learning to deploy code using them,
which includes syntaxes for package specification formats, de-
pendency and versioning rules and deployment conventions.
Simply ignoring these environments and managing modules
and dependencies by hand is tempting, but the complexity
of heterogeneous environments and keeping track of depen-
dency updates can become burdensome — all these package
managers were created to solve practical problems which
the developer would have to otherwise directly handle, after
all. Another alternative that is often proposed, especially by
users of operating systems that feature a system-provided
package manager (as is the case of most Linux distributions),
is to avoid using multiple package managers and use a single
general-purpose package manager. This is, of course, as much
of a solution as trying to make everyone agree on a single
programming language — one of many analogies between
package management and programming languages. The result
is that the ecosystem is not getting any simpler, and at first
glance it seems that package management is indeed a largely
unsolved problem.

However, maybe the statement “package management is
an unsolved problem” simply does not make sense, and is
akin to saying that “programming languages are an unsolved
problem”. In the programming languages world we accept
that the multitude of languages is a given. Beyond that, we
understand that there are families of languages with different
paradigms, with well-known tradeoffs. We also accept that
there is room for domain-specific languages (DSLs) and for
general-purpose languages. Most importantly, we know how
to set boundaries for each language and how to make DSLs
and general-purpose languages interact. Most existing pack-
age management systems, however, are still oblivious to the

https://doi.org/10.1145/3365137.3365402
https://doi.org/10.1145/3365137.3365402

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Hisham Muhammad, Lucas C. Villa Real, and Michael Homer

fact that they exist as part of a larger ecosystem, with parts of
it handled by other package managers.

In this paper we draw on our own unique combination of
experiences on all sides of this topic: developing a system-
wide package manager for a Linux distribution [6, 7], creating
a language-specific package manager [8], and integrating
system and language-specific package managers [7], as well
as being simply developers and end users of other software.
By building a taxonomy for package management and sharing
our experiences with package management development in
both the programming language and operating system spaces,
we aim in this paper to frame the design choices, layers,
and trade-offs attendant to package managers for developers,
maintainers, and users.

2 Paradigms of package management:
filesystem-oriented vs. database-oriented

It is a typical didactic device to organize the landscape of
programming languages into paradigms, such as imperative,
functional, object-oriented, and so on. The paradigms a lan-
guage is categorized into inform users about particular design
choices, and with these choices come design trade-offs. In
the world of package managers, we can also identify general
paradigms, by looking at their core concepts and design trade-
offs. Package managers map between files and packages, and
between packages and their dependencies, allowing users to
perform maintenance of their systems in terms of packages
rather than at the level of individual files. The central design
choice in a package manager, therefore, is how to perform
those mappings.

There are two approaches on how to map files to packages:
the mapping can be based on the hierarchical directory struc-
ture where the files reside, or can be separate. As this choice
embodies a series of trade-offs and is the single decision that
affects the design and implementation of a package manager
the most, we identify these as two paradigms of package
management. When the mapping is internal to the file hierar-
chy structure, we say that package management is filesystem-
oriented1. When it is external to the hierarchy of files being
managed, the mapping needs to be stored elsewhere. We say
in these cases that management is database-oriented. Most
package managers for Linux distributions, such as RPM and
dpkg/APT, are database-oriented. Filesystem-oriented pack-
age management is more often seen in language-specific pack-
age managers, but as we will see in Section 5.1, it can also be
performed system-wide.

The directory structure used by pip, the package manager
for Python modules, is representative of the database-oriented
style. Modules installed by pip are stored under a filesystem

1Being database-oriented does not imply an opaque, binary database format.
Various database-oriented package managers store their file manifests in
plain text files

path that conforms to Python’s default directory for locally-
installed modules (e.g. /usr/lib/python3.7/site-pack-
ages/), whose definition predates the introduction of pip.
Database-oriented designs are often chosen when the package
manager needs to accomodate a pre-existing directory struc-
ture. If Python packages have modules with the same name,
clashes may occur. In a filesystem-oriented design, such as for
example that of RubyGems, this problem would not happen.
Each package has its own subtree under a versioned directory,
and the rubygems.rb module, part of the default installation
of Ruby, takes care of finding the appropriate files when mod-
ules are loaded with the require function. Figure 1 lists more
examples of package managers and their classification.

The major trade-off between the filesystem-oriented and
the database-oriented approaches is whether applications
should be aware of the file structure defined by the man-
ager or whether the manager should adapt to the file structure
defined by applications. This affects how the manager tracks
the mapping of files and how applications are configured to
find their resource files.

In filesystem-oriented managers the mapping of files to
packages is simple. File conflicts are naturally avoided by
storing files of different packages in separate subtrees. Ver-
sioning conflicts between variants of the same package can
also be handled via the tree structure. The structure also be-
comes more transparent to users, which can simplify their
experience. The run-time lookup of files by applications, how-
ever, can be complicated, if they are oblivious to the structure
defined by the package manager. Applications must either
agree beforehand to this structure (which might be an option
in domain-specific environments), or the package manager
has to do extra work to configure them to use the structure,
such as setting configuration options or environment variables,
or in the worst case, patching them.

Conversely, in database-oriented managers the mapping
of files to packages is more complicated. Applications may
install files wherever they please, and the package manager
needs to keep track. This includes handling potential conflicts
if two packages want to use the same pathname. Database-
oriented systems will usually report on these conflicts and
forbid them. It is up to the integrator (such as a distribution
developer) who is building packages to resolve the conflict
somehow. Also, the package manager needs to verify that the
database and the contents of the filesystem remain in sync,
which is trivial in the filesystem-oriented approach. The run-
time lookup of files on database-oriented systems, on its turn,
is greatly simplified. In most cases it will be a non-issue, since
each file is in the location the application expected it to be in
the first place. However, it does become an issue when the file
has been relocated by the integrator who built the package,
perhaps for solving conflicts.

Filesystem-oriented managers also present their own set of
challenges, as the description of packages as set of files does
not present a full picture. Packages, especially in system-wide

Taxonomy of Package Management PLOS ’19, October 27, 2019, Huntsville, ON, Canada

installations, often need to perform global changes to the sys-
tem, such as adding users and setting environment variables.
Some applications also include database-oriented portions
which are assumed to be updated by installation scripts, such
as refreshing global caches. Non-relocatable packages often
assume hardcoded default paths in which resource files are
expected to be found; if the package manager employs a dif-
ferent organization, it needs to reconfigure applications to
make sure the required files are found. One common solu-
tion is to use environment variables, since applications often
support setting custom paths via variables in addition to the
system-wide defaults. Most applications can be installed in
custom locations, with the installation prefix being adjustable
at compile time. The /opt directory is a traditional location
for filesystem-oriented organization of additional packages.
Core system services are often harder to relocate.

To use the filesystem or a database is a frequent design
dilemma beyond package management, especially on Unix
systems, where “everything is a file” is a long-standing tra-
dition. Database-oriented solutions often are considered un-
Unix-like (GConf, for instance, raises comparisons to the
Windows Registry [9]). It is remarkable that, in spite of the
Unix philosophy, most Linux package managers are primarily
database-oriented.

3 Language-specific vs. language-agnostic
package managers

In the world of programming languages, there is a distinction
between DSLs and general purpose languages. Categorizing
languages in one camp or another is not always easy, but a
working definition is that domain-specific languages are those
designed with a specific application domain in mind, and
general purpose languages are the complementary set, that
is, those languages designed not with a particular domain in
mind, but rather focusing on general areas such as “systems
programming”.

While we tend to see DSLs as smaller languages than
their general-purpose counterparts (and in fact early literature
used to term them “little languages” [10]), what defines a
language as being a DSL is the inclusion of features tailored
for a domain. This means that a domain-specific language
may end up including all features normally understood as
those defining a general purpose language. MATLAB [11], for
instance, is a complete programming language, but its wealth
of features for numerical computing it is often regarded as
being domain-specific [12, 13].

In the world of package management, there is also a distinc-
tion between domain-specific and general purpose systems,
but it is better defined. Language-specific managers are de-
signed to be used in a particular language ecosystem. This
ecosystem usually focuses around a single language (hence
the name “language-specific”), but that is not necessarily the

case: environments such as .NET and the JVM make this evi-
dent, but other languages also grow into families: for example,
npm supports JavaScript, CoffeeScript, TypeScript and others.
Besides, these VM-based ecosystems usually support load-
ing native extensions, and therefore they must also support
building and integrating libraries usually written in C or C++
(or, in the case of RubyGems with JRuby, Java). A language-
specific package manager, therefore, is almost never specific
to code written in a single language. Like domain-specific pro-
gramming languages which are not necessarily much smaller
than their general-purpose counterparts, the more sophisti-
cated language-specific package managers are in effect much
broader package managers with specific support for an ecosys-
tem added. They need to build and deploy executables, native
libraries and resource files written in different languages, keep
track of installed files, check dependencies, perform network
operations and manage remote repositories. Some of these
tasks can be simplified due to ecosystem-specific assump-
tions, but many are equivalent in complexity to the tasks of a
system-wide package manager.

This leads us to question why should we have language-
specific managers at all, if they replicate so much of the work
done by general-purpose package managers. Two arguments
in defense of language-specific managers are scalability and
portability. If we compare the number of packages provided
by a typical Linux distribution versus the number of mod-
ules available in mature module repositories from scripting
languages, it becomes clear that the approach of convert-
ing everything into native packages is untenable: for example,
while the repository for the Debian Linux distribution features
over 59,000 packages in total, the Maven Central repository
for Java alone contains over 290,000 packages, with the ad-
vantage that the repository is portable to various platforms,
some of which lack a built-in universal package manager
(Microsoft Windows being a notable case). Still, this kind of
effort duplication does happen: the Debian repository con-
tains 1,196 Ruby packages; this is a far cry from the over
150,000 modules in the RubyGems repository.

Figure 2 contrasts language-specific and language-agnostic
package managers, through a few examples. Language-specific
package managers tend to be highly portable, even if the mod-
ules in their repositories are not. For example, while most
packages for NuGet are Windows-specific, the manager it-
self has been ported to Unix systems via Mono; packages
that do not depend on Windows APIs can be shared by var-
ious platforms. Language-agnostic managers are generally
system-specific, and may present some degree of portability
to other similar OSes. Note that the extent of portability of all
language-agnostic managers in Figure 2 is limited to specific
Unix variants. Those managers support packaging programs
written in any language and for that reason do not expect par-
ticular file formats or subdirectory layouts. Language-specific
managers make more assumptions in that regard, and also
support customizing the installation directory prefix, which

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Hisham Muhammad, Lucas C. Villa Real, and Michael Homer

Filesystem-oriented Database-oriented

Language-agnostic
Homebrew (macOS), GNU Stow, Nix,
Encap, PBI 8 (PC-BSD), GoboLinux

RPM (RedHat/Fedora/etc.), dpkg/apt (Debian/Ubuntu/etc.)
PBI 9 (PC-BSD), Pacman (ArchLinux)

Language-specific
npm (server-side JavaScript), Bower (client-side JavaScript)

RubyGems (Ruby), Cargo (Rust), LuaRocks 1.x (Lua)
Cabal (Haskell), pip (Python), LuaRocks 2.x (Lua)

Figure 1. A package manager taxonomy, with representative examples

Language-specific managers

Package managers npm RubyGems NuGet LuaRocks

Portability OS-independent (all Unix, Windows)

Installs code written in JS family, C/C++ Ruby, C/C++, JVM family any .NET, C++ Lua family, C/C++

Files managed JS scripts, JS modules Ruby scripts, Ruby modules .NET and native packages Lua scripts, Lua modules

Supports per-user install yes

Language-agnostic managers

Package managers Nix Homebrew RPM GoboLinux

Portability Linux/macOS macOS/Linux Linux/AIX Linux/Cygwin/OSX

Installs code written in any language

Files managed all kinds

Supports per-user install yes no* no yes

* different installation prefixes are supported but /usr/local is strongly recommended.

Figure 2. Contrasting language-specific and language-agnostic package managers

is a necessity for running as a non-privileged user. Some
system-wide managers, like Nix and GoboLinux support per-
user installations, but that often requires patching packages
for removing hardcoded pathnames. Homebrew supports this
feature as a tool, but their packages are not adapted for that,
so per-user installations are discouraged.

4 Integration between languages vs.
integration between package managers

Programming languages, both general-purpose and domain-
specific, frequently have points of integration between each
other, in the form of foreign function interfaces (FFIs). Code
written in one language can frequently call into code written
in another language, sometimes with some adapter code in
between. Domain-specific languages are in fact frequently
embedded in general-purpose languages and in programs.
Programming languages can also integrate between each other
through common calling and linking conventions.

The same is not true of general-purpose and domain-specific
package managers. Integration between two package man-
agers is almost unheard of, even when they may be found on
the same system. Instead, a subset of packages distributed
through a domain-specific package manager are repackaged
in the format of the general-purpose system. These pack-
ages are fully integrated with the broader system and fully
detached from the domain-specific manager. Packages that

were not repackaged are still available by using the domain-
specific system, but others are available twice, potentially in
different versions and with different configurations. Debian
experimented with a rubygems-integration package that
provided a limited connection between APT and RubyGems,
allowing Debian packages of individual RubyGems to sat-
isfy dependencies in the gem tool, but encountered nontriv-
ial complications in doing so [14, 15]. Debian has not yet
pursued even this level of integration for other widely-used
domain-specific package managers, and the integration it has
for RubyGems is ad-hoc and highly specialized. In Section 5.3
we discuss our attempt at deeper integration in GoboLinux,
but we are aware of no other such integrations beyond what
Debian performs.

A weaker form of one-way integration between package
managers occurs when the system-wide manager uses the
language-specific package manager merely as a build sys-
tem. An example is the use of LuaRocks by Buildroot [16].
Buildroot is a system for compiling full-system images for
embedded environments, which has its own package specifi-
cation format. It uses LuaRocks as a build tool: the Buildroot
specification scripts launch LuaRocks to generate Lua mod-
ules and then collect and integrate them to the system.

Taxonomy of Package Management PLOS ’19, October 27, 2019, Huntsville, ON, Canada

5 Experiences with package management
In the following section, we share some of our experiences,
each case study dealing with one the three aspects of package
management design outlined above.

5.1 GoboLinux
GoboLinux [6] is a Linux distribution based on the concept
of installing each package in a separate installation prefix.
Introduced in 2002, it was the first Linux distribution to be
entirely based on a filesystem-oriented approach to pack-
age management2. Each program is installed under its own
versioned directory, such as /Programs/Bash/4.3.28 and
/Programs/GTK+/3.16.0. This direct mapping of the pack-
age structure to the directory layout allows one to inspect
the system using standard Unix commands. For example, to
get a list of installed packages, one only needs to issue ls
/Programs.

As well as the individual program trees, a tree of symbolic
links called /System/Index collects references to the files
from every program in the system. A single directory contains
symlinks matching the structure of the “lib” directory of
every program, paralleling the contents of /usr/lib in a con-
ventional layout. Figure 3 illustrates this structure. In this way
only a single entry in PATH is needed to find every executable
and libraries can be loaded using the ordinary linker mecha-
nisms without further configuration. An additional layer of
fixed symlinks provides backwards compatibility with the
conventional Filesystem Hierarchy Standard[17].

In its original design, packages compiled for GoboLinux
targeted their versioned directory during compilation. That
made them aware of the modified filesystem structure, and of-
ten required configuration contortions and also workarounds
to handle the management of files that were designed to be
shared between packages. In a later revision, GoboLinux
switched to compilation targeting /usr and installation to the
per-program location. Through this structure, even though
packages are organized in self-contained directories under
/Programs, applications find their files through the traditional
Unix hierarchy, as /usr is a symbolic link to /System/Index.

5.2 LuaRocks
LuaRocks [8] is a package manager for the Lua ecosystem. It
was developed building on our previous experience writing
package management tools for GoboLinux and adapting it to
the realities of a language-specific manager.

The design changes that LuaRocks underwent were due
to lessons learned on the specificities of language-specific
package management. The original design of LuaRocks was

2While GoboLinux remained a research distribution with a niche com-
munity, its design proved influential, as its filesystem-oriented ap-
proach was used as a basis for the design of Homebrew, the most
popular package manager in macOS today, as noted in its origi-
nal documentation: https://github.com/Homebrew/legacy-homebrew/tree/
89283db693e9380ccc2e4abc4fa0ad14b4790202

/System/

 /Index/

 /sbin -> bin

 /bin/

 /include/

 /lib/

 audit -> /Programs/Glibc/2.18/lib/audit

 awk -> /Programs/Awk/4.1.0/lib/awk

 cairo -> /Programs/Cairo/1.12.16/lib/cairo

 /cmake/

 Evas -> /Programs/EFL/1.11.0/lib/cmake/Evas

 qjson-> /Programs/QJSON/0.8.1/lib/cmake/qjson

 ...

 ...

(a) The filesystem is indexed with the use of
directories and symbolic links.

/Programs/

 /ALSA-Lib/

 /ALSA-Utils/

 /BeeCrypt/

 /4.1.2/

 /4.2.1/

 /include/

 /lib/

 /Resources/

 Architecture

 Dependencies

 Description

 FileHash

 MetaData

 UseFlags

 Current -> 4.2.1

 /Settings/

 beecrypt.conf

 ...

(b) Versioned directory tree.

Figure 3. GoboLinux file system hierarchy

filesystem-oriented, like GoboLinux. LuaRocks included then
a custom wrapper for Lua’s require() function, much like
RubyGems. However, many Lua users perceived the wrapper
as tampering with a standard library function, and disliked
having to perform an initial setup in their scripts for using
modules installed via LuaRocks 3. For LuaRocks 2.0, the
design was changed to be database-oriented, so that Lua mod-
ules could be installed into a typical Unix-like layout that
matched the default configuration of the Lua interpreter’s
package loader. With all packages installed under a single
directory, a database had to be put in place matching files
to packages. Supporting multiple versions of the same pack-
age installed at the same time is still possible, but requires
the now-optional custom package loader, which produces
versioned filenames when the dependency graph requires an
old version of a module. This language-specific runtime ad-
justment allows avoiding the issue with filename conflicts,
so common with database-oriented designs — a luxury that
operating system package managers cannot afford so easily.

Having a high-level declarative specification allowed us to
make such radical changes to the installation layout easily.

3Since Ruby 1.9, the interpreter preloads the rubygems module automat-
ically; in prior versions uses had to add require ’rubygems’ explicitly.
This was never an option for Lua due to the language’s minimalistic design,
rendering LuaRocks as a strictly optional component.

https://github.com/Homebrew/legacy-homebrew/tree/89283db693e9380ccc2e4abc4fa0ad14b4790202
https://github.com/Homebrew/legacy-homebrew/tree/89283db693e9380ccc2e4abc4fa0ad14b4790202

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Hisham Muhammad, Lucas C. Villa Real, and Michael Homer

Since LuaRocks produces relocatable packages, it does not
provide to specification files (rockspecs) any knowledge of
the final directory structure. This allowed all existing rock-
specs to be used in the new directory layout without any
changes. This level of information hiding was only possible
because we were dealing with a language-specific manager,
where we knew what was in the files (Lua source code and
binary dynamic libraries) and how they would be used (as
command-line scripts or loaded by Lua through its package
loader system).

5.3 GoboLinux Aliens
In GoboLinux we researched the idea of building a foreign
function interface (FFI) of sorts into our general-purpose
package manager, which we called Aliens[7]. Aliens provides
an API to write shims that connect the general-purpose system
package manager with domain-specific package managers.

With Aliens, packages in the general-purpose manager may
express a dependency on a package provided by a supported
domain-specific manager: for example, a package that re-
quires the Perl XML::Parser module, available from CPAN,
can express a dependency “CPAN:XML::Parser >= 2.34”.
The Aliens system directs such a dependency to a translat-
ing shim, which uses the CPAN tool to confirm whether it
is satisfied, to install the package (and its dependencies) if
required, and to upgrade it, communicating any necessary in-
formation back to the general-purpose manager. The shim can
then make symbolic links for any binaries or native libraries
that have been installed. Any package in one of the supported
domain-specific managers is automatically available in this
way, without creating wrapper packages.

The domain-specific managers themselves are not modified
in this process. Each system is given complete control of a
directory tree, and the relevant languages configured to search
in that tree. This protects against changes in the functioning
of the third-party systems, and allows users to access them
directly as well. A drawback, however, is that the domain-
specific managers do not have reciprocal access to the wider
system: installing a RubyGem that depends on a native li-
brary will not innately result in the native dependency being
satisfied. The cross-platform nature of these systems makes
even specifying such information in a machine-readable way
difficult, although some, notably LuaRocks, make the attempt.

Not all domain-specific package managers lend themselves
to this integration. Some are resistant to placing their files
within a restricted directory tree, preferring to install into the
global filesystem hierarchy where they may interfere with
each other and the system, while others do not mechanize
well. This limited coverage is an additional drawback of the
Aliens approach, but one that is limited to failing to solve an
existing problem, rather than creating a new one. As with pro-
gramming languages, a consensus implementation platform
would inevitably be simpler, but social and technical factors

make it impractical. FFIs, and Aliens, attempt to bridge the
gap, with reasonable success.

6 Conclusion
Package management is an area that is notably neglected in
academic studies, but is one of practical impact in the de-
sign of modern operating systems and module systems for
programming languages. In the realm of programming lan-
guages, we have useful ways to categorize languages. Package
management even lacks common terminology, and each new
system faces the same design issues time and again, even as
we move to containers and orchestration systems [18].

As we categorize package management systems, we con-
clude that filesystem-oriented designs are preferable as they
tend to be less susceptible to conflicts, but they require some
level of intervention to enable files to be found at run time.
We observe that this control exists when language-specific
package managers are bundled with the language environ-
ment, as is the case with npm for node.js and RubyGems
for Ruby. These managers were free to adopt filesystem-
oriented designs since they adjusted their module loaders
accordingly. The other way to exert this control over run-time
lookup is to employ a system-wide lower-level solution as
we did in GoboLinux with the /System/Index tree of sym-
bolic links or in the stowfs filesystem virtualization proposed
for GNU Hurd [19]. Database-oriented designs, on the other
hand, are more generally applicable, but are more opaque
to their users and are more prone to package conflict and
file-to-package synchronization issues. For these reasons, we
advocate filesystem-oriented systems in general, but we also
recognize that there are situations where a database-oriented
solution works best to preserve compatibility with the ecosys-
tem at play, as was the case with LuaRocks.

Our classification of package managers as language-ag-
nostic and language-specific highlighted the complementary
qualities of these two classes of managers. The existence of
language-specific package managers distributes integration
efforts, as upstream module developers are often the package
integrators themselves. This allows scaling repositories way
beyond what is possible through the work of OS distribution
maintainers, but also generates some tension between the
language and distribution communities as perceived dupli-
cate work and incompatibilites happen. Through our experi-
ence in both ends of the spectrum of package management
— from low-level distribution management in GoboLinux to
high-level language modules in LuaRocks — we observed
a necessity for these different levels of system organization
to recognize each other and aim for cooperation. Package
managers do not exist on their own, but are part of an ecosys-
tem in which other package managers often take part. We
shared our experience in progressing on this direction with
the GoboLinux Aliens project, and we plan to further pursue
FFI-style package management interoperability.

Taxonomy of Package Management PLOS ’19, October 27, 2019, Huntsville, ON, Canada

REFERENCES
[1] Bower - a package manager for the web. http://bower.io, accessed

August 9, 2019 2019. URL http://bower.io.
[2] npm - Node Package Manager. http://npmjs.com, accessed August 9,

2019 2019. URL http://bower.io.
[3] node.js. https://nodejs.org/, accessed August 9, 2019 2019.
[4] Homebrew - the missing package manager for macOS (or Linux).

http://brew.sh, accessed August 9, 2019 2019.
[5] The MacPorts project. http://www.macports.org, accessed August 9,

2019 2019.
[6] Muhammad H, Detsch A. An alternative for the Unix directory structure.

III Workshop Software Livre, Porto Alegre, Brazil, 2002.
[7] Homer M, Muhammad H, Karlsson J. An updated directory structure

for Unix. linux.conf.au 2010, Wellington, New Zealand, 2010.
[8] Muhammad H, Mascarenhas F, Ierusalimschy R. LuaRocks - a declar-

ative and extensible package management system for Lua. Lec-
ture Notes in Computer Science 2013; 8129:16–30, doi:10.1007/
978-3-642-40922-6_2.

[9] Wallen J. GConf makes Linux administration a little more like Windows.
TechRepublic Feb 2003. URL http://www.techrepublic.com/article/
gconf-makes-linux-administration-a-little-more-like-windows/, http:
//is.gd/V5fBLB, accessed August 9, 2019.

[10] Bentley J. Programming pearls: Little languages. Commun. ACM Aug
1986; 29(8):711–721, doi:10.1145/6424.315691. URL http://doi.acm.
org/10.1145/6424.315691.

[11] MATLAB. https://www.mathworks.com/products/matlab.html, ac-
cessed August 09, 2019 2019. URL https://www.mathworks.com/
products/matlab.html.

[12] Gill A. Domain-specific languages and code synthesis using haskell.
Queue Apr 2014; 12(4):30:30–30:43, doi:10.1145/2611429.2617811.
URL http://doi.acm.org/10.1145/2611429.2617811.

[13] Fowler M. Language workbenches: The killer-app for domain
specific languages? jun 2005. URL http://martinfowler.com/
articles/languageWorkbench.html, http://martinfowler.com/articles/
languageWorkbench.html, accessed August 9, 2019.

[14] Nussbaum L. Re: Ruby packaging in Wheezy: gem2deb, new policy,
etc. debian-ruby mailing list post, 18 January 2011. Available from
https://lists.debian.org/debian-ruby/2011/01/msg00050.html, accessed
August 9, 2019 2011. Mailing list post.

[15] Debian Ruby Team. Teams/Ruby/Packaging - Debian wiki. https://
wiki.debian.org/Teams/Ruby/Packaging, accessed August 9, 2019.

[16] Buildroot. http://www.buildroot.org, accessed August 9, 2019 Apr
2019. URL http://www.buildroot.org/.

[17] Russel R, Quinlan D, Yeoh C ((eds.)). Filesystem Hierarchy Standard.
2004. Available from http://www.pathname.com/fhs/pub/fhs-2.3.pdf,
accessed August 9, 2019.

[18] Helm - the package manager for Kubernetes. http://helm.sh, accessed
August 09, 2019 2019. URL http://helm.sh.

[19] Stow 2.2.0. http://www.gnu.org/software/stow/manual/stow.pdf, ac-
cessed August 9, 2019 2012.

http://bower.io
http://bower.io
http://npmjs.com
http://bower.io
https://nodejs.org/
http://brew.sh
http://www.macports.org
http://www.techrepublic.com/article/gconf-makes-linux-administration-a-little-more-like-windows/
http://www.techrepublic.com/article/gconf-makes-linux-administration-a-little-more-like-windows/
http://is.gd/V5fBLB
http://is.gd/V5fBLB
http://doi.acm.org/10.1145/6424.315691
http://doi.acm.org/10.1145/6424.315691
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://doi.acm.org/10.1145/2611429.2617811
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
https://lists.debian.org/debian-ruby/2011/01/msg00050.html
https://wiki.debian.org/Teams/Ruby/Packaging
https://wiki.debian.org/Teams/Ruby/Packaging
http://www.buildroot.org
http://www.buildroot.org/
http://www.pathname.com/fhs/pub/fhs-2.3.pdf
http://helm.sh
http://helm.sh
http://www.gnu.org/software/stow/manual/stow.pdf

	Abstract
	1 Introduction
	2 Paradigms of package management: filesystem-oriented vs. database-oriented
	3 Language-specific vs. language-agnostic package managers
	4 Integration between languages vs. integration between package managers
	5 Experiences with package management
	5.1 GoboLinux
	5.2 LuaRocks
	5.3 GoboLinux Aliens

	6 Conclusion
	REFERENCES

