
Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, Kaique Sacchi
IBM Research

Large-scale 3D geospatial processing made possible

Spatial data in the mining domain

Drill holes (line geometries)
Minerals (Au, Cu, etc)

Lithology (granite, pyrite, etc)
Visible alteration

Geological structure
Gold grade

...

C
op

yr
ig

h
t(

c)
 G

e
ol

og
ic

al
 S

ur
ve

y
Ir

el
a

n
d

C
o

py
rig

ht
(c

)
Le

a
pf

ro
g3

d
C

o
p

yr
ig

h
t(

c)
 M

in
in

g
 M

a
ga

zi
ne

Geological models (shapes)

Resource models (blocks)

Large-scale data and spatial queries

Distance-based
‘’Get the average ore grade of all block models
in a zone no farther than 300 meters from this
given drill hole’’

C
op

yr
ig

h
t(

c)
 M

in
in

g
-T

ec
hn

ol
o

gy
.c

om

Intersection-based
‘’Get a list of all drill hole segments that
intersect with ore shapes’’

Volume-based
‘’Get a list of shapes associated with copper and
whose volume is greater than M’’

Numbers from real-world databases
- 16M blocks
- 30k drill holes
- 1.2M drill hole segments
- Shapes with > 100k triangles

3D Spatial Databases (SQL/MM and OGC)

Few options
- PostgreSQL (PostGIS)
- Oracle Database (Oracle Spatial)

Scalability issues
- Brute-force algorithms
- Poor support for parallel queries
- Queries may take SEVERAL DAYS to run
- Severe number of function calls

Tuning
- Execution cost of spatial functions
- Statistics: average geometry size / table
- Number of parallel workers
- Cache size

Input Geometries

Line 1 Shape 1 st_3ddistance(Line 1, Shape 1)

Line 2 Shape 2 st_3ddistance(Line 2, Shape 2)

Line 3 Shape 3 st_3ddistance(Line 3, Shape 3)

Line 4 Shape 4 st_3ddistance(Line 4, Shape 4)

Line 5 Shape 5 st_3ddistance(Line 5, Shape 5)

...

Line N-1 Shape M-1 st_3ddistance(Line N-1, Shape M-1)

Line N Shape M st_3ddistance(Line N, Shape M)

SELECT st_3ddistance(a.geom, b.geom) FROM lines a, shapes b

SQL/MED: Foreign Data Wrappers

Federated server architecture
- Server receives and decomposes a query
- Query segments are dispatched to execute on remote servers
- Results are assembled by the server

Idea
What if we extract spatial elements from the query and dispatch them to a
remote server that processes them on a GPU?

Foreign tablesLocal tables

PostgreSQL

PostgreSQL

MongoDB

DB2

postgres_fdw

mongodb_fdw

db2_fdw

Presenting Lumic-GIS

Accelerated spatial queries using GPUs
- Lumic-GIS disguises as a PostgreSQL server

- PostgreSQL is configured to split and forward
calls to PostGIS API to Lumic-GIS

- Spatial queries execute on the GPU

Details
No modifications to PostgreSQL installation
 - postgres_fdw ships by default with PostgreSQL

Geometry data is kept in memory

A single function call to the kernel is needed

The architecture of Lumic-GIS

Parallelism
- CUDA streams
- OpenMP threads

Memory management
- CUDA unified memory
- Reuse of memory buffers

GPU allocation
- Given P processors and M GPUs,
we allocate S = P/M CUDA streams
per GPU

CUDA kernel: Volume

 Based on the divergence theorem:

 We evaluate the flux across each face to
 get the volume

Polyhedron P

CUDA kernel: 3D Distance

…

2

3

4

N

1

Line L

P0

P1

1. Define the triangle as a vector T
2. Define the line as a vector L
3. The minimum distance between T and L
 is given by the squared distance Q = (T–L)2

Benefits
- No discretization of the line segment
- Embarassingly parallel

CUDA kernel: 3D Intersection

- Same parametric representations as before
- Same face decomposition approach
- We intersect the line segment with the plane
containing the triangular face
- We pick the intersecting point and test if it is within
the triangle

Performance evaluation

Queries
- Distance of drills to areas of interest
- Intersection of drill holes with geological shapes
- Volume of a geological shape

Synthetic dataset
- 7,846 drill holes
- 228,772 drill hole segments
- 71 geological shapes

Hardware
- Two NVIDIA Tesla V100 GPU cards
- Intel E5-2620 v4 / 32 cores, 768 GB of RAM, 1.2 TB of SSD

Software
- PostgreSQL 12 beta1, cache set to 50 GB
- PostGIS 3.0.0 alpha1
- Enforced use of parallel processing
- Modified PostGIS function cost estimates

https://github.com/lucasvr/synthetic-mine-maker

3D Distance (7,846 lines x N shapes)

- Largest set computed: 557k pairs of geometries
- PostGIS: 2h20min (worst), 51 min (best)
- Lumic-GIS: 11 sec (worst), 7 sec (best)
- Lumic-GIS is 1300x faster than PostGIS
- Only 5 workers planned and launched by PostgreSQL

3D Distance (7,846 lines x 7,846 lines)

Use case scenario
- Identify drill holes that are next to drilled segments rich in certain minerals

Notes
- PostgreSQL uses parallel workers to SCAN the tables…
- … then joins the results with a single-processor call to ST_3DDistance
- Best recorded speedup of Lumic-GIS over PostGIS: 61x

Configuration Query time (sec)

PostGIS 8 CPUs 718.9 ± 0.2

4 CPUs 721.2 ± 2.2

2 CPUs 721.3 ± 1.5

1 CPU 719.1 ± 0.4

Lumic-GIS 1 GPU, 1 Stream 13.9 ± 0.2

1 GPU, 32 Streams 13.5 ± 0.4

2 GPUs, 16 Streams 11.8 ± 0.2

3D Distance (1 shape x 1 shape)

Notes
- Hand-picked pairs of geometries with different number of triangles
- Single pair of geometries leads to a single PostgreSQL worker
- Lumic-GIS configuration: 1 GPU, 32 CUDA threads
- It is unfeasible to compute the distance between larger shapes on PostGIS

Number of triangles Query time (sec)

Shape 1 Shape 2 PostGIS Lumic-GIS Speedup

1,936 2,270 9.2 0.05 159x

10,447 10,656 232 ± 1 0.45 515x

18,596 21,785 852 ± 20 1.44 ± 0.01 591x

49,052 51,095 5,212 ± 82 8.80 ± 0.24 592x

150,571 230,681 72,187 ± 451 123 ± 0.24 582x

20 hours 2 minutes

3D Intersection (7,846 lines x N shapes)

Notes

- Both implementations employ a two-phase
algorithm

- The query planner causes PostgreSQL to schedule a
single worker thread

- Lumic-GIS performs 250x faster than PostGIS

Volume computation (from our previous paper)

Geometry
Closed shape with 500 faces

Results
PostGIS: 42 minutes (2530 ± 68 seconds)
Lumic-GIS: under a second (0.91 ± 0.006 seconds)
Improvement of 2770x over PostGIS

Notes
PostGIS does not split the geometry among multiple workers
Real-life databases have shapes with more than 100k faces

Overhead of geometry decompression on PostGIS

TOAST: The Oversized-Attribute Storage Technique
- PostgreSQL uses a fixed page size (usually 8kB)
- Large field values are compressed and/or broken into
multiple physical rows

CPUs Shapes Compressed
(sec)

Uncompressed
(sec)

Overhead

1 10 668 624 7.1%

20 2,009 1,966 2.1%

30 2,869 2,642 8.6%

40 4,656 4,549 2.3%

50 5,635 5,490 2.6%

60 6,839 6,718 1.8%

70 8,339 8,164 2.1%

8 10 258 207 24.6%

20 756 615 22.9%

30 1,083 867 24.9%

40 1,722 1,445 19.1%

50 2,121 1,750 21.1%

60 2,565 2,124 20.7%

70 3,125 2,882 8.4%

Queries over decompressed TOAST
- Test: 3D Distance (lines x shapes)
- Best case: Lumic-GIS 1270x faster (N=20)
- Worst case: Lumic-GIS 690x faster (N=30)

Double-precision versus Single-precision

Tradeoff between speed and accuracy is
acceptable in many use cases

Lumic-GIS is built with single-precision
and double-precision IEEE floats

Test: 3D Distance (lines x shapes)

We are 59% faster with single-precision

- HPC can change business

 Transformation of decision making process: going from hours or days to seconds

- Zero learning curve for those already using PostGIS

 Seamless integration with PostgreSQL / foreign-data-wrappers

- Opportunity to improve other industries

Conclusions

Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, Kaique Sacchi
IBM Research

Large-scale 3D geospatial processing made possible

