
Seamless translation of modern file formats to SEG-Y through
the file system interface

Lucas C. Villa Real
IBM Research

lucasvr@br.ibm.com

Maximilien de Bayser
IBM Research

mbayser@br.ibm.com

Introduction

Seismic processing and analysis are at the center of several activities ranging from exploration and
production of reservoirs to hydraulic fracturing and underground gas storage. Supporting these industries
there is a decades-old open standard that is ubiquitous in software and surveying equipments: SEG-Y.

Despite its wide adoption in the industry, the SEG-Y file format is inneficient in many ways: there is no
support for data compression nor for spatial indexes; headers and data are interleaved on disk, meaning
that certain header attributes may only be found through sequencial file scans; several metadata are made
optional by the standard and are frequently missing from files (e.g., coordinates are present in the file
while the spatial reference system is not), etc.

Alternative formats to SEG-Y such as ASDF (Krischer et al., 2016) and PH5 (Hess et al., 2017) do
not present the same limitations. However, incorporating support for such formats into legacy software
is not always possible. Consequently, companies are faced with the challenge of converting archived
SEG-Y files into the new format, a task that often proves expensive and time consuming, or to manage
two separate software stacks (one for each file format).

This paper presents a virtual file system interface that exposes modern seismic file formats as if they
were SEG-Y – without requiring the modification of existing programs and saving storage space when
such formats incorporate data compression features. While our study uses an in-house self-describing
file format based on HDF5 as backing storage, the technique applies to other implementations as well.

The SEG-Y data format

The first version of SEG-Y was defined in 1975 specifically for recording seismic data on 9-track tapes
and has become ever since the de-facto standard for seismic storage. Although the second version from
2002 makes it independent from tape devices (Hagelund and Levin, 2017), it is still defined as a “data
stream format”, meaning that random access cannot be assumed. It also continues to include support
for legacy standards such as the EBDIC character encoding and the IBM floating point format that were
standard on the IBM mainframes and tape hardware back in the day (Barry et al., 1975). One positive
aspect of revision 2.0 is the switch from Big Endian to the Little Endian byte ordering that is prevalent
today, even on variants of the new IBM Power CPUs.

The format, shown in Figure 1, is defined as follows: the stream starts with a fixed 3200 EBDIC text
header, followed by a 400 byte binary header and by a variable number of 3200 byte extended text
headers. After that comes a stream of pairs of trace header and trace data. The trace header is 240 bytes
long while the trace data is variable in length. The length of each trace can be given in the trace header,
although it is also possible to define a fixed length for all traces in the file header.

First EAGE Digitalization Conference and Exhibition
6–9 April 2020, Vienna, Austria



 

Tape label
(optional)

Textual
file header
(EBCDIC)

Binary
file header

1st extended
textual file

header
(optional)

Nth extended
textual file

header
(optional)

1st trace
header

1st trace
data

Mth trace
header

Mth trace
data

128-byte 3200-byte 400-byte 3200-byte

...

3200-byte 240-byte variable size variable size240-byte

1st trailer
data

(optional)

Nth trailer
data

(optional)

3200-byte

...

3200-byte

...

trace trace

Figure 1 SEG-Y file format (revision 2)

The specification for file and trace headers defines a rich set of metadata, such as timestamps, coordinates
and transduction units. In practice, many SEG-Y files’ metadata are filled up with zeros, except for
coordinates (often stored in the wrong field). Worse, the standard does not define a metadata field for
the geographic coordinate system that was used, making the interpretation of coordinates a guesswork
in many cases.

Even though the general design makes sense for the requirements of recording and transmitting a live
stream of data coming from sensors, the SEG-Y format is not well suited for the needs of processing
and archival. It induces an inefficient use of computing resources and contains unnecessary complexity
that can only be explained due to its long history. The standard documents itself in some places offers
alternative interpretation to the meaning and correct usage of some fields.

Arguably, the biggest issue is the lack of support for random access. Although the 2002 version of the
standard includes a metadata flag for fixed trace length, due to the prevalence of malformed headers one
cannot confidently use random access in these cases.

Another issue is the interleaving of trace metadata and data. In many computing tasks, such as indexing,
only the metadata portion is needed. If all the metadata headers were contiguous, large chunks of
metadata could be read directly from disk to memory very efficiently, offloading the entire operation
to a DMA controller. Data interleaving also reduces the efficiency of common lossless compression
algorithms such as Gzip. These algorithms work best if they can work on large chunks of similar data.

Finally, although the standard is open, the lack of a reference implementation of libraries and tooling
encourages different interpretations and shortcuts that negatively affects the interoperability between
files generated by different tools.

Improved file formats for seismic data

There have been recently several proposals of alternative representation for seismic data on disk. The
most prominent of these are based on HDF5 (Folk et al., 2011), a popular container for scientific and
high-performance applications.

ASDF, the Adaptable Seismic Data Format, is one such format designed for seismology based on self-
describing files. The format is intended to be used by researchers and analysts; it does not aspire to
replace formats suited for data archival, streaming, and low-latency applications (Krischer et al. (2016)).

Another format is PH5 (Hess et al., 2017), which uses a feature from HDF5 that allows compressed
waveforms to be stored separately from metadata. By doing so, updates to the metadata can be performed
without having to reprocess and retransmit the entire dataset of an experiment to the end users. The
drawback is that data is no longer self-contained in a single file; users need to keep track of the main
header file plus several waveform files in order to distribute complete datasets across different machines.

SeismicH5 is an in-house file format that we implement as part of our seismic studies. Based on HDF5,
its datasets and metadata (which may be compressed) provide a 1:1 mapping to SEG-Y that ease the
conversion between the two. Differently from SEG-Y, our format stores traces contiguously on disk,
which allows random seeks to be performed at constant time and improve compression rates. SeismicH5
retains all metadata featured in the SEG-Y specification under the following HDF5 datasets:

First EAGE Digitalization Conference and Exhibition
6–9 April 2020, Vienna, Austria



/text_headers: the EBCDIC textual file header, encoded as a string data type.
/binary_header: a compound data type representing the binary file header.
/trace_headers: a compound with all members of the SEG-Y trace header structure. This dataset
is written in fixed sized chunks; appending of new trace headers is possible.
/traces: represents the trace data as chunks of IEEE single-precision floating point numbers. Trace
data are encoded in Little-Endian.

Many tasks in the processing of seismic data rely heavily on metadata attributes. For example, given that
the position of a sound source is known one might want to find all traces that come from hydrophones in
the same seismic line. Since the data from different hydrophones might be distributed almost randomly
on the file, it is essential to use indices to accelerate these operations.

In our format we have added the possibility to embed indices that are based upon the meta-data fields
determined by the user. These indices are entirely optional and can be discarded and regenerated at will.
Indices and metadata are represented by the following extra datasets:

/metadata: mixed data types indicating the original sample format (IEEE, IBM, 1-, 2-, or 4-byte
integers), the size of the original SEG-Y file, and other flags needed to convert the file back to SEG-Y.
/indices: several indices to speed up searches for traces based on specific metadata.

Disguising modern seismic file formats as SEG-Y

Despite the advantages of file formats based on HDF5 containers, most legacy programs cannot be
readily modified: sometimes their source code is not available, the companies who developed those
software no longer exist, or the development and testing efforts may be too high.

To work around this problem we implement SEGY-FUSE, a virtual file system interface that enables
legacy programs to consume data from modern file formats (such as our SeismicH5 prototype) without
modification to their source code. Given a collection of seismic files encoded as HDF5, our approach
exposes the same set of files as virtual SEG-Y files under a different file system namespace. When
read requests (comprised of file offset and how many bytes to read) arrive from the application on that
namespace, the mapping information embedded in the HDF5 file is looked up and the contents of the
SEG-Y file are reconstructed on-the-fly.

Because the translation of file offsets to HDF5 datasets is only needed when an application requests to
read a SEG-Y file, no information besides the basic file attributes (i.e., ownership, access permissions,
and timestamps) needs to stay resident in memory. This approach allows a just-in-time strategy for the
allocation of data structures and parsing of HDF5 datasets, leading to minimal consumption of memory
resources, even when reading extremely large datasets.

Depending on the application and on limitations of the file system interface, the read buffer provided by
the application (in which the SEG-Y data is expected to be placed) can be potentially smaller than the
size of a seismic trace. Consequently, it is possible that two or more sequential requests made to SEGY-
FUSE translate to the same trace. To prevent the same trace from being retrieved from HDF5 twice
(which can be especially expensive when trace data is compressed on disk), the last trace requested by
the application is kept uncompressed in memory until either (i) the file is closed by the application or
(ii) the application issues a read on another offset of the file that is covered by a different trace.

An overview of our architecture, based on the FUSE file system framework (Rath and Szeredi, 2019),
is given in Figure 2. A collection of seismic files in HDF5 format is managed by an instance of the
virtual file system. On top of it there is a collection of virtual SEG-Y files that map 1:1 to the HDF5
underneath. Existing applications are then able to seamlessly consume the data from the HDF5 files
through SEGY-FUSE as if they were regular SEG-Y files.

First EAGE Digitalization Conference and Exhibition
6–9 April 2020, Vienna, Austria



Figure 2 Backwards compatibility with SEG-Y through the file system interface

Performance considerations

This section presents the performance impact of the file system virtualization on file readers. We note
that, although the SeismicH5 supports compression of trace data and headers using several standard
algorithms, an analysis of compression formats is not in the scope of this paper.

We used a synthetic dataset with 3,744,501 uniform traces with 1504 samples each, totalling 5.8 GiB.
The same file compresses down to 5.7 GiB with an LZ4 filter. Our test consists of reading, 10 times, a
small window at the center of the bounding box of the file. Three tests have been conducted: reading
(1) the original SEG-Y file over a native EXT4 file system, (2) the virtualized SEG-Y file through our
SEGY-FUSE translator, and (3) directly from the SeismicH5 file using its own API.

Reading mode Time (seconds) Notes
SEG-Y over EXT4 7.60 ± 0.9 –
Virtualized SEG-Y over SEGY-FUSE 6.75 ± 0.66 Faster than original
SeismicH5 compressed with LZ4 0.27 ± 0.06 3% of original time

Table 1 Time to read a full seismic file

As shown in Table 1, in our current implementation, dynamically translating from HDF5 to SEG-Y
is even faster than reading from the original file. Thanks to the use of spatial indexes, the window of
interest is quickly identified in the SeismicH5 file. On the other hand, the entire SEG-Y file needs to
be scanned so that the full extent of its bounding box can be computed and the traces associated with
the window identified. Naturally, reading straight from SeismicH5 is even faster than going through the
virtualization interface: it takes just 3% of the original time to do so.

Conclusion

We have shown in this paper that it is possible to have modern and legacy seismic file formats coexisting
in a virtualized environment that avoids the replication of data at the storage layer. Using HDF5 con-
tainers as a reference in our study, we demonstrate that translation between file formats is possible with
no performance impact at runtime, as long as the information required to recreate the SEG-Y file can be
efficiently retrieved from its corresponding container.

The advantage of our approach is twofold. First, it is economically more attractive to have a seamless
translation mechanism than to invest on the acquisition of new software or to modify existing systems.
Second, it allows integration into the rich scientific computing ecosystem around the HDF5 format,
which includes I/O libraries for high-performance-computing, visualization tools, plug-ins, and a vibrant
community of users and developers alike.

First EAGE Digitalization Conference and Exhibition
6–9 April 2020, Vienna, Austria



REFERENCES REFERENCES

References

Barry, K., Cavers, D. and Kneale, C. [1975] Recommended standards for digital tape formats. Geo-
physics, 40(2), 344–352.

Folk, M., Heber, G., Koziol, Q., Pourmal, E. and Robinson, D. [2011] An overview of the HDF5 tech-
nology suite and its applications. 36–47.

Hagelund, R. and Levin, S.A. (Eds.) [2017] SEG-Y revision 2.0 Data Exchange format.
Hess, D., Azevedo, S., Falco, N. and Beaudoin, B.C. [2017] PH5: HDF5 Based Format for Integrating

and Archiving Seismic Data. AGU Fall Meeting Abstracts.
Krischer, L. et al. [2016] An Adaptable Seismic Data Format. Geophysical Journal International,

207(2), 1003–1011.
Rath, N. and Szeredi, M. [2019] The reference implementation of the Linux FUSE (File System in

Userspace) interface.


