
A NOVEL NOISE REMOVAL ALGORITHM FOR VERTICAL ARTIFACTS IN 
DIGITAL ELEVATION MODELS

Lucas C. Villa Real1*, Jose Edgardo L. Aban2 
and Saiful A Husain2

1IBM Research Brazil, São Paulo, Brazil
  lucasvr@br.ibm.com

 2Universiti Brunei Darussalam
 edgardo.aban@ubd.edu.bn, saiful.husain@ubd.edu.bn

* Corresponding author: lucasvr@br.ibm.com

ABSTRACT
Remote sensing is a technique which demands a large amount of analysis on data which may 

have been captured from a variety of sources. Common sources range from aerial vehicles equipped 
with  scanning  devices  to  sensors  attached  to  satellites  in  space  missions.  The  data  acquisition, 
however,  is  commonly  subject  to  the  interference  of  external  factors,  such  as  particles  in  the 
atmosphere and clouds, which may lead to noise in the data. This paper presents a technique to detect  
the presence of such artifacts, as observed in some digital elevation model data, and an algorithm to  
patch them.  A case study on the second version of  the  ASTER GDEM shows that  the  proposed 
algorithm is effective in the detection and patching of vertical artifacts and that it can be applied to  
different data sets in the realm of digital elevation models.
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INTRODUCTION
Aligned with the concept of a smarter planet, the interest of governments and corporations to 

predict natural disasters and their impacts on the society and businesses has substantially increased.  
Moreover,  the  dissemination of  high resolution data  to  describe features  of  the  Earth is  allowing 
computer  models  to simulate the likelihood of such events with a great  level  of  details.  Still,  the  
processes involved in the data acquisition through remote sensing are susceptible to conditions that 
could affect the quality of that data, thereby compromising the accuracy of various simulations.

One  type  of  data  derived  from remote  sensing is  the  terrain  elevation,  also  called digital 
elevation model (DEM). Commonly presented in a gridded format that is convenient to process and 
use, they can have different spatial resolutions and accuracy, depending on the techniques employed to 
sample the surface. (e.g.: satellite data, specialized radars, on-land survey)

The Shuttle Radar Topography Mission (SRTM) is one common data source for DEMs. It was 
launched by NASA in 2000 and covers the globe from latitudes around 60 degrees north and 56  
degrees south at a horizontal resolution of 3 arc-seconds (or 90 meters at the Equator). The SRTM data 
was obtained through radar interferometry, and many data voids and elevation issues originated from 
inherent  backscatter  in  radar  were  identified  by  the  scientific  community  and  have  been  fixed 
throughout the years (Jarvis et al., 2000). As a consequence, the SRTM DEM is regarded as a stable 
elevation data set for scientific computation (Huang et al., 2011).

In 2011, NASA and  Japan's Ministry of Economy, Trade and Industry (METI) have jointly 
released the second version of the ASTER GDEM elevation model. Covering the globe at latitudes up 
to 83 degrees and at a 1 arc-second resolution, the GDEM presents itself as a potential replacement for 
SRTM. The ASTER GDEM data is obtained by the analysis of two stereo images captured from a pair 
of sensors aboard the Terra satellite (Jet Propulsion Laboratories, 2001). Images from different passes 
of the satellite are stacked and averaged to produce the elevation data. However, since the satellite  
does not cover the globe with the same number of passes, some regions might present higher accuracy 
than others. Errors may arise from cloud cover and snow, resulting on bad pixels that may have a rate  
up to 12%, depending on the criteria adopted to determine what is a bad pixel (Urai, Tachikawa and 
Fujisada, 2012). Therefore, a number of applications may not benefit  from the use of the ASTER 
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GDEM v2 data set. That is the case of hydrology models that must rely on a good representation of the 
topography to calculate surface runoff, for example.

Given the intrinsic problems of the various data acquisition techniques,  the elevation data  
needs to be preprocessed for the removal of bad pixels before they are used for scientific computation.  
This paper presents a novel algorithm to detect the presence of vertical artifacts (mostly produced by 
noise and cloud cover)  in digital  elevation models  and to patch them.  A case study with a noisy 
topography  data  extracted  from ASTER GDEM v2  is  presented,  followed  by  an  analysis  of  the 
achieved results and future work.

PRIOR ART
Different  techniques  to  remove  artifacts  from DEMs have been proposed in  the  literature 

(Falorni et al., 2005). For data containing just a small fraction of bogus pixels that are not particularly 
correlated, smoothing algorithms such as Gaussian Filtering and Wavelet Filtering (Gagnon and Jouan, 
1997) are common approaches that typically present good results. More complex scenes that include 
clouds or large, interconnected groups of noisy pixels need to be processed by specialized methods 
that take into account the nature of the problem.

Stevenson, Sun and Mitchell (2009) have proposed a denoising method for 3D objects which 
preserves  features  such  as  sharp  edges  and  corners.  While  suited  for  3D  objects,  it  has  been 
successfully adapted to topographic data in projected coordinate systems.  The algorithm works by 
triangulating the DEM, and then altering the positions of the vertices of the triangles by recalculating 
the  orientation  of  the  triangular  faces'  normal  vector.  The  level  of  denoising  is  adjusted  by two 
parameters: a threshold that establishes the sharpness of the features to be preserved, and the number 
of iterations that will determine how much the data will be changed. The algorithm is effective in the  
removal of noise, but dense cloud formations are interpreted as part of the topography and smoothed  
rather than removed.

Feng  et  al.  (2004)  present  a  cloud  removal  method  in  remote  sensing  images  using 
homomorphism filtering. Based on the observation that thin cloud has low frequency and land surface  
has more details and is found more frequently, the low frequency part of the image can be reduced by 
a filter in the frequency domain through a Fourier Transformation. The filtered image can then be 
obtained by changing the image  back to the spatial  domain.  Because the translation of the image 
between  different  domains  is  computationally  expensive,  the  authors  put  forward  an  improved 
homomorphism filtering. Based on general theory of statistics, the transformations and the filtering are  
approximated  with  regional  average  in  the  spatial  domain.  Through  that  approach,  thin  cloud  is 
removed on the whole for a number of images, although some information is lost due to averaging. 
Homomorphism filtering does not work appropriately for the removal of dense clouds, however.

It's clear from the prior art that a substitution-based method is required to remove large groups 
of noisy pixels, be they related to clouds or not. Said methods rely on a ground truth data set (spatially 
aligned with the original data set) from where the bogus elevation pixels are substituted. The patching  
algorithm  proposed  in  this  paper  follows  this  concept,  with  the  differentiation  that  only  pixels 
classified as artifacts are modified.

VERTICAL ARTIFACT DETECTION ALGORITHM
The classification of pixels as artifacts is performed based on comparisons between the source  

and the ground truth data sets. The idea developed is that both data sets should have a similar elevation 
average and standard deviation,  granted  they have the same number of pixels and cover the same 
geographic extents. Groups of pixels which deviate from that norm are considered to be noise. That is 
a sound assumption for data sets close to each other in time, as well as for natural environments and 
for small to medium-sized cities or villages. 

The core of the algorithm is as follows. With a NxN grid-moving window defined as G where 
N is an odd number, the algorithm scans a DEM D and compares it against the ground truth data set R, 



also called the reference data set. On each scan, the elevation differences between the two sets are 
calculated to determine the existence of artifacts in D.
 

Let α be a multiplier and σ the standard deviation of a given data set, the maximum accepted 
difference between the central point of the two NxN grids GD and GR is defined as:

M = ( σGR + |D - R|) * α (1)

If the difference between the two central points is less than  M, then it is assumed that the 
central point in GD does not constitute noise. Otherwise, a patch is applied to the point located at the 
center of the grid GD according to the algorithm described in the next subsection.

The  grid  size  hence  determines  how  many  features  of  the  scene  are  considered  in  the 
comparison. Naturally, the size of N is directly related to the spatial resolution of the DEM: the higher 
its  resolution is,  the greater  N may be.  For example,  in a DEM with a 1-meter  horizontal  spatial  
resolution, a 3x3 grid would not be sufficiently large to cover the width of a street. The α multiplier 
controls  how  much  the  algorithm  tolerates  noise.  Values  greater  than  1  will  disregard  small  
disturbances in the DEM whereas values between 0 and 1 will lead to an increased number of cells 
considered artifacts.

PATCHING ALGORITHM
If a pixel Di,j is classified as artifact by the detection algorithm, a patch function determines its 

new value based on the pixel Ri,j from the reference data set: the difference φ between Ri,j and one of its 
neighbors  Rx,y  is calculated, and  Di,j is then substituted by the value of its neighbor  Dx,y  added by  φ, 
provided that Dx,y is not classified as an artifact too.

If all neighbor cells around  Di,j  are bogus, then a different patching function is applied: the 
value of the reference pixel Ri,j is summed to the difference of the global average of the two data sets 
D and  R. That difference is taken into account because the base elevation of the two data sets may  
differ depending on the acquisition instruments used to produce the DEMs.

The patching function can be thus defined as:

Di , j={Ri , j+∣D̄−R̄∣ , if all neighbor cells of D i , j are classified as artifacts
D x , y+ (Ri , j−Rx , y) , otherwise

(2)

             
ALGORITHM EVALUATION AND DISCUSSION

A scene of the ASTER GDEM v2 was obtained from a region in Brunei Darussalam in which 
a large amount of noise was identified. Part of that scene is depicted in perspective on Figure 1-A. The 
noise appears as peaks that are not removed by the standard filtering techniques such as Gaussian 
Filtering or averaging. Using an upscaled SRTM as a the reference data set, the proposed algorithm 
was applied to the noisy scene with a grid-moving window size of  N=7 and with a multiplier  α  of 
value 1.0. The resulting DEM is shown on Figure 1-B.

Figure 1-A: Noisy ASTER GDEM v2 data Figure 1-B: Patched ASTER GDEM



Through a visual inspection, it's possible to see that all the evident vertical artifacts pertaining 
to the ASTER GDEM were removed whilst preserving the overall features of the original data set. 
From the whole scene, 13% of the cells were considered to be noise by the artifact detection algorithm,  
which is a number very approximate to the maximum bad pixel rate identified by Urai, Tachikawa and 
Fujisada (2012) on the second version of the ASTER GDEM.

In order to compare the proposed algorithms with the classic approaches of data smoothing, a 
mean filter algorithm of sizes 3x3, 5x5 and 7x7 was applied to the same scene from ASTER GDEM 
v2. Mean  filtering  reduces  the  amount  of  intensity  variation  between  one  pixel  and  the  next, 
effectively removing noise such as speckles. However, all cells of the DEM are potentially modified  
by this technique, which may be undesirable depending on the application.

One of the parameters  used to  assess the  patching process  was spectral  profiling.  Several  
image products were used in the process of witnessing the different data sets, namingly the reference 
SRTM data set, the raw ASTER GDEM scene from Figure 1-A, the patched ASTER GDEM image, 
and the 3x3, 5x5, and 7x7 mean smoothed images.

In order to compare the performance of the different algorithms, image products were stacked 
as layers using the ERDAS Imagine software and selected pixels were assessed. The outcome was a 
pseudo composite image having 5 layers which include the three smoothed images described earlier.  
On each layer, the assessed pixels were analyzed by the spectral profile viewer, which allows for the 
visualization of their reflectance spectrum. This technique is particularly useful for hyperspectral data 
that can have hundreds of layers.  Moreover, it  allows estimates of the chemical composition of the 
material in the pixel. In more discrete applications, the technique can allow the user to  compare the 
profiles that are generated to those from laboratory (or field) spectrophotometers. In this study,  the 
technique was  used to  assess  the  behavior  of  patched and unpatched pixels  in  all  the  five  image 
products mentioned above.

Ten (10) points of  the areas that have been patched by the proposed algorithm were then 
compared  among  the  different  stacked layers.  In  Figure  2-A,  the  sample  points  picked  from the 
pseudo-composite image are identified with a red placemark icon. The height values, derived from the  
32-bit unsigned images and shown on Table 1, indicate that data smoothing is not appropriate for the 
removal of groups of vertical artifacts like the ones featured in the DEM processed. However, they 
remain useful as a post-processing filter to reduce the occurrence of small perturbances which are not  
identified by the  detection algorithm presented in this paper.

Figure 2-A: Selected points picked from a set 
of SRTM-patched pixels for sampling.

Figure 2-B: Sample points selected from a set 
of pixels that were not patched.



Table 1. Sampled height values from patched points in different composite layers.

Likewise, 10 sampling points were also determined for areas that contained unpatched pixels.  
Figure 2-B shows the sample points randomly picked from the pseudo-composite image, identified by 
an yellow placemark icon. The values shown on Table 2 indicate the derived height values from the 
unpatched 32-bit unsigned images.

It's worth noting the elevation distance between the sampled pixels in the raw ASTER GDEM 
v2 and the SRTM reference data sets (which average 13.8 meters). When compared to the noisy values 
presented in Table 1 (whose distance averaged 656.4 meters),  the heights assigned to the patched 
pixels in Table 1 indicate that the replacement algorithm can successfully maintain the shape of the  
reference data set and respect the base elevation of the two data sets at the same time: the average  
elevation distance between the sampled pixels of the patched and the SRTM grids is of 11.4 meters.

Table 2. Sampled height values from unpatched points in different composite layers.  

The sampling points and their corresponding pixel/height values in each of the representative 
layers are also plotted as series of spectral profiles on Figures 3 and 4.
 

Composite Layers Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
Raw ASTER 1954 1499 2298 1831 2028 2064 2118 2031 2246 2297

SRTM 1402 1011 1175 1623 1633 1146 1735 875 1434 768
Patched Grid 1410 1027 1169 1652 1641 1154 1753 883 1442 763

Mean Filtered Grid (3x3) 1942 1492 2170 1850 2035 2050 2080 1989 2237 2188
Mean Filtered Grid (5x5) 1925 1450 2019 1836 2020 2045 2050 1867 2171 1963
Mean Filtered Grid (7x7) 1893 1384 1841 1811 1992 2029 2009 1699 2086 1640

Composite Layers Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
Raw ASTER 1727 692 1533 365 1183 1175 1262 2218 1469 881

SRTM 1736 726 1523 372 1198 1168 1261 2181 1481 887
Patched Grid 1727 692 1533 365 1183 1175 1262 2218 1469 881

Mean Filtered Grid (3x3) 1719 699 1533 361 1190 1190 1259 2222 1463 894
Mean Filtered Grid (5x5) 1717 704 1530 360 1180 1189 1260 2226 1455 902
Mean Filtered Grid (7x7) 1710 709 1523 357 1173 1188 1259 2228 1446 909

Figure 3: Comparison of spectral profiles/height profiles for the pseudo-composite layer for selected 
SRTM-patched areas/pixels. 
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CONCLUSION
This paper presented a novel algorithm for the detection of vertical artifacts in digital elevation 

models  and for the patching of pixels determined as such. An analysis  of the performance of the  
algorithm was executed against the second version of the ASTER GDEM (with a horizontal resolution 
of 30 meters), having SRTM (sampled from 90 to 30-meter resolution) as reference data set. Post-
processing  validation  and  comparisons  of  the  image  products  showed  the  effectiveness  of  the 
algorithm in removing the visibly  noisy artifacts, while at the same time preserving the spatial and 
height characteristics of neighboring cells. The final DEM product derived from the patching process  
shows that the algorithm can efficiently salvage the high resolution properties of noisy data sets.

Possible improvements to specific file formats could also be made by implementing a content-
aware version of the algorithm through the incorporation of meta-data from the DEM (provided that it  
exists). On a LiDAR-derived DEM, for instance, the elevation data can be accompanied by meta-data 
such as the intensity of the signal (the return strength of the laser pulse) and the return number from a 
single given pulse. In that case, the detection of artifacts could be heightened by e.g.:  letting only 
points with a single return to be evaluated by the algorithm, or by preventing urban features such as 
tall buildings and towers from being detected as noise (Priestnall, Jaafar and Duncan, 2000).

Another content-aware version of the artifact detection technique could include the processing 
of ASTER meta-data: each elevation file obtained from the ASTER GDEM v2 has an associated QA 
(Quality Assurance) file that is also available for download. The QA file indicates how many ASTER 
scenes were used to estimate the elevation of a certain cell. Also, there are situations in which the 
ASTER GDEM may come with cells whose elevation were not estimated through stereo pairs (either 
because of noise, data voids, too little ASTER scenes available or other reasons). In such cases the QA 
data set will indicate which source was used to estimate their elevation (e.g.: SRTM or GTOPO30).  
Even though the location of the noisy artifacts evaluated in this paper did not coincide with regions 
poorly covered, the use of the QA data set could be positive for other regions around the globe.

Although improvements to deal with specific file formats and data sets are discussed in this 
section,  a  content-agnostic  algorithm such  as  the  presented  one  produces  very  satisfatory  results 
without  data requirements  besides the  elevation,  thereby enabling the immediate  use  of  unheeded 
digital elevation models on a large number of applications.

Figure 4: Comparison of spectral profiles / height profiles for the pseudo-composite layer for selected 
unmodified pixels.
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