
A Hybrid Parallelization Approach for High
Resolution Operational Flood Forecasting

Swati Singhal
IBM Research India

New Delhi, India
swatisin@in.ibm.com

Lucas Villa Real
IBM Research Brazil

Sao Paulo, Brazil
lucasvr@br.ibm.com

Thomas George
IBM Research India

Bangalore, India
thomasgeorge@in.ibm.com

Sandhya Aneja
Universiti Brunei Darussalam

Brunei Darussalam
sandhya.aneja@ubd.edu.bn

Yogish Sabharwal
IBM Research India

New Delhi, India
ysabharwal@in.ibm.com

Abstract—Accurate and timely flood forecasts are becoming
highly essential due to the increased incidence of flood related
disasters over the last few years. Such forecasts require a high
resolution integrated flood modeling approach. In this paper, we
present an integrated flood forecasting system with an automated
workflow over the weather modeling, surface runoff estimation
and water routing components. We primarily focus on the water
routing process which is the most compute intensive phase and
present two parallelization strategies to scale it up to large
grid sizes. Specifically, we employ nature-inspired decomposition
of a simulation domain into watershed basins and propose a
master slave model of parallelization for distributed processing
of the basins. We also propose an intra-basin shared memory
parallelization approach using OpenMP. Empirical evaluation of
the proposed parallelization strategies indicates a potential for
high speedups for certain types of scenarios (e.g., speedup of
13× with 16 threads using OpenMP parallelization for the large
Rio de Janeiro basin).

I. INTRODUCTION

Operational flood forecasting is becoming increasingly
important due to the changing global climate and frequent
incidence of flooding-related catastrophes in recent years [1].
Flooding incidents affect public safety, damage infrastructure,
disrupt transportation networks, contaminate drinking water,
and interfere with the smooth operation of first responders to
more serious emergencies resulting in massive socio-economic
losses. Studies [2] indicate that accurate and timely predictions
accompanied by judicious response can go a long way in
mitigating the impact of flood related disasters.

Depending on the geography and terrain, there are multiple
causes for flooding, of which the most common are: (a) sudden
heavy precipitation incidents in urban areas with poor drainage,
(b) seasonal storms resulting in heavy persistent rainfall that
saturates land and results in overflowing waterbodies, (c) tidal
surges and breached levees due to wind storms in coastal
areas. Since each of the above causes is intimately connected
with unpredictable short-to medium range weather events,
flood modeling capabilities in the past were limited by the
availability of accurate weather observations. In recent years,
there has been a heavy focus on integrated forecasting of
weather (precipitation, temperature, wind speed) and flooding
events. Typically, these integrated forecasting systems follow
a two stage mechanism where the first stage employs a high
resolution localized weather model to predict precipitation with
sufficient lead time. The second stage uses these predictions
as input to an overland flood routing model, which computes
surface runoff and routes the flow taking into account various

surface characteristics such as variation in land use type,
topography, vegetative cover, etc. In such systems, the weather
forecasting is performed using fine resolution regional and
global atmospheric models that discretize the nonlinear partial
differential equations representing evolution of atmospheric
flows in time [3], while the overland flows are simulated via
equations based on conservation of mass and momentum with
the vertical effects simplified to yield two-dimensional shallow
water equation [4]. The overland flood routing engine could
also be used to provide input flow at various pour points along
a river to enable a dynamic river model determine the potential
for a flooding event downstream.

Over the last few years, there have been huge advances
in scaling up high resolution weather models using state-
of-the-art HPC systems making it feasible to obtain highly
accurate fine-grained forecasts for large geographical regions
with sufficient lead time [5], [6]. This, in turn, provides a
huge opportunity to improve the quality of flood forecasts.
Unfortunately, even though, there currently exist a number of
overland flood routing models [7], [8], these models cannot
make effective use of the fine-grained weather forecasts pri-
marily due to computational requirements. Most of the existing
flood modeling packages are designed for hydrologists to work
on medium to high end desktops. These packages place a
strong emphasis on being able to incorporate multiple different
factors (e.g., vegetation type) into the modeling with an easy to
use graphical interface so that hydrologists can manually build
and experiment with small sized grids. While such approaches
might work for a high resolution small sized domain or a
coarse resolution domain covering a larger area, it is currently
not feasible to scale these methods to domains covering
large regions for which high resolution weather forecasts are
available.

In this paper, we consider the weather and hydrology fore-
casting systems operational at the UBD|IBM Centre, Brunei
Darussalam. The high resolution weather forecasting system is
comprised of three levels of nested domains with the innermost
domain covering approximately 180,000 square kilometers.
The country of Brunei covers approximately 30% of this
region. Flood models that attempt to make use of moderate
resolution (90 m) Shuttle Radar Topography Mission (SRTM)
[9] data for this region would require a grid size of about
2 million points while models that seek to incorporate high
resolution (1m) Light Detection and Ranging (LiDAR) [10]
topography data require grid sizes upwards of 15 billion points.
Currently, it is not even feasible to run such models on

405



normal workstations due to lack of sufficient memory and large
running times.

In this paper, we focus on developing scalable parallel
implementations of an overland flow model on HPC systems
that can be used in tandem with high resolution regional
weather forecast models in an automated fashion to obtain
highly accurate and precise flood forecasts with a substantial
lead time (24-48 hours). We attempt to make the best possible
use of what ever information is available by retaining it at the
original source resolution and employing a suitable grid size,
however, large.

To be specific, we make the following main contributions:

• We describe a coupled weather and flood forecast-
ing system comprised of a high resolution regional
weather model [11], [12] and an IBM proprietary
hydrological model (FloodSim) based on 2D diffusive
routing that can be customized for a new target region
in a semi automated fashion with minimal input. To
the best of our knowledge, this is the first integrated
system that can be deployed for high resolution oper-
ational flood forecasting.

• We parallelize the hydrological model simulations via
a nature inspired spatial decomposition of the target
region into independent watershed basins, which are
mapped to multiple processes using MPI. Within each
process, we employ shared memory parallelization
using OpenMP.

• We evaluate our implementation on two different
architectures, namely an IBM Power 750 system based
on the latest Power7+ processors, and an x86 system,
both running Red Hat Enterprise Linux. Results in-
dicate that we are able to achieve a speedup of up
to 13× for our shared memory implementation while
using 16 threads for a single large basin. Even for
a test case with large number of small basins, our
hybrid implementation demonstrates a speedup of up
to 10.4×.

The rest of the paper is organized as follows: Section II
discusses related work on parallelization approaches for flood
routing engines. Section III provides an overview of our
integrated weather and flood modeling framework. Details
on the routing algorithm as well as distributed and shared
memory parallelization approaches are presented in Section IV.
Section V describes empirical evaluation of our parallelization
strategies on two real world domains. Concluding remarks and
directions for future work are discussed in Section VI.

II. RELATED WORK

In this section, we briefly discuss existing work on scaling
up water routing algorithms for flood modeling. Broadly
speaking, existing approaches to parallelize 2D water routing
algorithms can be grouped into two categories corresponding
to functional and domain decomposition respectively.

Of these, the first class of methods based on functional
decomposition involves parallelization of the nested loops for
processing the cells of the grid. In particular, Neal et al [13],
explored the intrinsic parallelism presented in the functions

that looped around the floodplain cells of the domain via
OpenMP. In this study, a maximum speedup of 5.8× over
the serial algorithm was reported for 8 cores with domain
sizes varying from 3,000 to 3 million cells. Greater speedups
were observed on large domains. The key limiting factors for
the parallel speedup were the serial time and processor load
imbalances.

The second class of methods employ domain decompo-
sition, where the grid to be simulated is split into smaller
domains that are processed in parallel. The main challenge in
this case is figuring out how to perform such a division while
achieving load balance. This task is particularly difficult, since
the computation costs depend not only on static properties of
the domain, but also on whether there is any accumulation in
the neighborhood. For instance, when half of the sub-domains
all have dry cells while the other half contains wet cells, the
processors responsible for the dry sub-domains will be mostly
idle while the rest are busy routing water amongst the wet cells.
Since the focus of our work is scaling up flood modeling to
larger grid sizes, we adopt the second approach, i.e., domain
decomposition in our work.

There is already a large body of literature [14], [15], [16]
on using domain decomposition to improve scalability of hy-
drological models via message-passing interfaces (MPI) with
domain decomposition. In particular, Yu [16] presents an ap-
proach to parallelize a two-dimensional diffusion-based flood
inundation model wherein the target region is divided spatially
into sub-regions of equal size and dimension according to
the number of processors available. Several ways of spatial
decomposition of the simulation domain are evaluated such as
splitting it into a number of fixed columns, rows or different
configurations of quadrants. Empirical performance evaluation
of the proposed approach on a large domain (232000 cells)
indicate a maximum speedup of 1.75×, 1.98× and 2.71×
for MPI simulations using 2 nodes, 4 nodes and 8 nodes,
respectively, with associated efficiencies of 0.87, 0.50 and 0.33.

Our current work extends existing work on domain decom-
position via a hybrid parallelization schemes that combines
watershed basin-based decomposition via MPI and intra-basin
decomposition via OpenMP leading to a more efficient utiliza-
tion of computing resources.

III. INTEGRATED FLOOD MODELING SYSTEM

In this section, we provide a brief overview of our in-
tegrated high resolution flood forecasting system. Figure 1
shows the key components of our flood modeling system
and their interactions. Given a specified target region, one
needs to perform a one-time region-specific domain setup to
incorporate publicly available static information on the region.
Post setup, there is a daily operational process which involves
(a) obtaining precipitation estimates typically via a weather
model, (b) determining expected surface runoff based on the
precipitation estimates via a soil model, and (c) distributing the
excess water via a flood routing engine to estimate flood ac-
cumulation. Additionally, at periodic intervals, the daily flood
forecasts are compared with historical data as well as on-the-
ground observations for verification and calibration purpose.
We describe each of these above tasks and the associated
software components in more detail below.

406



A. Static Domain Setup

Typically, there are multiple heterogeneous types of infor-
mation that need to be taken into account by an overland
flood model in order to represent the physical processes of
any target geographical region with good fidelity. Most of
this information is already captured within publicly available
datasets derived from space missions [17] and field sam-
pling [18], [19]. However, the different datasets often employ
varying spatial resolutions and file formats, which makes the
process of manually setting up domains for a new target
region very time-consuming and error-prone. To simplify this
process, our system contains a component called the Domain
Builder, which automates obtaining and processing topography
data, land use, soil type and properties, vegetation maps
and water bodies, from specified data sources. Examples of
such data sources include Shuttle Radar Topography Mission
(SRTM) data, Moderate-Resolution Imaging Spectroradiome-
ter (MODIS) land data products, OpenStreetMap, and Harmo-
nized World Soil Database (HWSD). Besides its ability to pull
data from public repositories, the domain builder module can
also incorporate private data sources such as those produced
by city survey departments. The data obtained from different
sources is processed to produce a unified geo-referenced digital
elevation model (DEM) annotated with all the relevant surface
attributes for the target domain. This digital elevation model
is then used to automatically delineate the watershed basins
within a domain using various surface depression analysis
techniques [20], [21], which can aid in speeding up the flood
simulations as explained in the next section (Section II). The
above setup process is extremely critical for the modeling
processes, but is typically done only once for a target domain
since the relevant information is mostly static.

B. Daily Operational Process.

As mentioned earlier, the typical operational flow is com-
prised of the following three steps:

Precipitation Forecasting. The quality and utility of flood
predictions is highly dependent on the accuracy and timeliness
of the input precipitation values. Therefore, to obtain reliable
precipitation estimates, our system uses a high resolution
weather forecasting service based on the Weather and Research
Forecasting model (WRF), which is a state-of-the-art regional
to global-scale numerical weather prediction model used by
weather agencies all over the world. To obtain high predic-
tion accuracy over smaller populated regions of interest for
flood modeling purpose as well as to minimize computation
for generating timely forecasts, we employ nested domain
configurations with one or more carefully positioned high
resolution domains (nests) embedded into a coarse resolution
parent domain [12]. For instance, in Brunei and Rio de Janeiro
(Brazil) where our flood forecasting is currently operational,
the WRF model is set up to provide a 48-hour weather forecast
at a temporal resolution of 10 minutes with a spatial resolution
of 1-1.5 km (1 km in Rio and 1.5 km in Brunei). The
WRF output includes accumulated total cumulus precipitation,
accumulated total grid scale precipitation (micro-physics) as
well as the latitude/longitude matrices of the domain covered
by the forecast.

Surface Runoff Estimation. The water available for overland
flow is determined by the incoming precipitation as well as

the absorption properties of the soil and other relevant envi-
ronmental attributes (e.g., wind speed, temperature). Though
our system is primarily being deployed for operational flood
forecasting, it is designed to be compatible with different soil
models backends, which could be appropriate depending on
the characteristics of the input data and on the aim of the
simulation. In particular, for surface runoff flood simulation,
we employ a soil model that focuses on the physics of water
absorption by the soil and the stage in which the soil becomes
saturated [22].

It is also possible to use soil models of resolution different
from that of the DEM generated during the initial domain
set up. In such a case, the coarse resolution surface runoff
values are mapped to the fine-grained geo-referenced digital
elevation model (DEM) by performing suitable cropping and
interpolation. For instance, one might choose to employ the
soil model provided as part of WRF with a resolution of 1km,
while the DEM may have a resolution of 90m (in case of
SRTM data), 30m (in case ASTER [23] data is used), or 1m
(in case LiDAR data is available).

Flood Routing. The flooding status of any specific location or
to be specific, the water accumulation (height) is determined
by the excess water available for flow and how exactly it
is routed around based on various topological characteristics.
To estimate the flood accumulation, our system employs a
flood routing engine that takes as input two grids of identical
resolution: (a) the digital elevation model (DEM), and (b) the
surface runoff estimates (SR), and performs a series of simu-
lation steps that involve local distribution of water. The flood
routing simulation is the core component of flood modeling.
Currently, it is also the most compute-intensive task and needs
to be optimized in order to scale up the overall flood modeling
process.

As in the case of soil models, our system is designed to
be compatible with different routing engines, which could be
chosen depending on the requirements of the simulation and
constraints arising from the grid size. Broadly speaking, there
are two types of routing approaches: steady-state methods,
where the output is the final solution for a certain domain, and
unsteady-state algorithms wherein we can obtain a solution
for intermediate time steps. For fine resolution operational
flood forecasting, it is preferable to choose steady state routing
since these methods scale better to grids of higher resolution.
It is also possible to use the steady-state routing engine to
downscale unsteady state engine output on a large coarse
domain to a high resolution DEM. Section IV provides more
details on the steady-state routing algorithm we employ for
operational flood forecasting.

C. Verification & Calibration.

The operation of the three modeling components in the
daily forecasting is determined by various configuration files
specifying target region-specific values for various parameters
(e.g., geographical grid nesting settings, model physics and
dynamics settings). For the very initial forecasts, these param-
eter values are often chosen by domain experts, but have to be
regularly fine-tuned based on the true ground observations in
order to achieve high quality predictions. Hence, our system
also comprises a verification component that automates the

407



Domain	  
Builder	  

Soil	  Model	  

Weather	  
Model	  

Flood	  Rou5ng	  
Engine	  

Surface	  runoff	  

Precipita5on	  

Verifica5on	  
Module	  

Daily	  Opera5onal	  Process	  

Eleva5on	  (DEM)	  	  
Watershed	  Basins	  

Flood	  output	  

Rainfall	  Data	   	  Flood	  Data	  

Calibrated	  Model	  
Configura5ons	  

Fig. 1. Architecture of our integrated flood forecasting system.

process of obtaining actual historic rainfall and flood data
from public sources such as weather stations, Dartmouth Flood
Observatory [24] and evaluating the model predictions against
the true observations. The results of verification can be used
to calibrate the model configuration parameters.

IV. FLOOD ROUTING ENGINE

In this section, we describe our flood routing approach in
detail. To ensure scalability, we employ a steady-state routing
approach that computes the final accumulation. However, to
mimic the characteristics of water flow, we have implemented
the routing algorithm in terms of processing small blocks of
a domain with a sliding window. Multiple iterations of this
algorithm gives an estimation of the path that the water will
take. The number of ideal iterations can be determined as a
ratio of the maximum distance between the basins’ inlets and
outlets and the block size. This approach works well in practice
and is currently operational in Brunei and in the city of Rio
de Janeiro in Brazil to issue alerts to disaster management
agencies. We first present the basic water routing algorithm
in Section IV-A. Then, we describe a distributed memory
(MPI) implementation based on partitioning the domain into
watershed basins in Section IV-B followed by a discussion of
a shared memory (OpenMP) implementation in Section IV-C.

A. Basic Water Routing Algorithm

The routing engine is provided two input grids (elevation
(DEM) and surface runoff (SR)) of identical resolution and
expected to return an output grid corresponding to the water
accumulation at each location. To determine the final accumu-
lation, we make use of the principle of hydrostatic equilibrium
which states that fluid bodies in contact will attain the same

overall height (water accumulation + natural elevation) in
steady state. We apply this principle repeatedly at a local
level by dividing the grid into small overlapping blocks of
size n = m×m (typically n = 9) assuming that within each
block, the fluid from any cell can flow to any other cell. If
the water accumulation was large enough to cover all the cells
in a block at steady state, then the overall steady state height
is given by the sum of the total accumulation in the block
and total natural elevation divided by the number of cells. The
steady accumulation for each cell is then given by difference
of the total height and the natural elevation. When the water
accumulation in the block is not large enough to cover all the
cells, then the water height is determined by only a subset of
the cells with lower elevation, but will be uniform across those
cells and the water accumulation is zero elsewhere.

The details of the algorithm are provided in Algorithm 1
and also illustrated with an example in Figure 2. The flood
routing algorithm sorts grid cell in ascending order of elevation
and progressively distributes water to attain equal overall
height. After each block is processed, the algorithm repeats the
distribution over the immediately adjacent overlapping block to
ensure carry over of water accumulation in case of a gradient.
To the best of our knowledge, this is the first attempt at
applying this approach for flood forecasting.

B. Distributed Memory Parallelization

A key characteristic of flood modeling is that there exists
a nature-insipired domain decomposition that allows efficient
distributed multi-processing. To be specific, the topography
of the domain typically allows one to partition the target
region into sub-regions delineated by hills, mountains, and
depressions. These sub-regions are called watershed basins

408



Fig. 2. Example to illustrate steady start routing algorithm

or catchments and there already exist a number of tech-
niques [20] [21] to automatically identify these divisions from
the digital elevation model using characteristics of the slope.
Figure 3 represents the delineation of Brunei, as produced by
SAGA GIS [25].

By their very nature, most of the routing computation
for a given basin will rarely have to include results of the
computation of a neighbor basin. So in effect, we have an
embarrassingly parallel simulation at the level of watershed
basins, which makes the division of workload based on wa-
tershed basins a natural choice. Communication between two
neighbor basins is necessary only in situations where the
water height within a basin reaches the elevation of one of
its spill points, in which case a water transfer occurs. A
synchronization primitive needs to be employed when such
points are computed. Alternatively, one may also join nearby
basins so that they form a bigger sub-region, thereby reducing
the complexity of the software.

To exploit the natural domain decomposition along water-
shed basins, we first assign a unique identifier to each basin and
the cells within them, which can be used a mask to determine
assignment to computing resources. We adopt a master-slave
approach for distributed processing as shown in Algorithm 2.
The master node maintains a list of all the basins in the domain
sorted by their size in descending order as well as all the
relevant details. It is also responsible for assignment of basins

Algorithm 1 Routing engine

Routine: Distribute water()

Input:
Ci.h : the topographical height of ith cell in the block, ∀[i]n1
Ci.x : the water accumulation of ith cell in the block, ∀[i]n1
Output:
Ci.x : Updated water accumulation of ith cell, ∀[i]n1

{Initialize remaining accumulation}
RA← C1.x+ C2.x+ . . .+ Cn.x
{Reset cellwise accumulation}
Ci.x← 0, ∀[i]n1
{Sort cells based on elevation in ascending order}
s← sort([C1.h, . . . , Ci.h, . . . , Cn.h])
{Initialize water level} currH ← Cs(1).h
{Initialize end position} endPos← 2
while (RA > 0 && endPos ≤ n)
{Identify cells to distribute water }
while (currH == Cs(endPos).h)
endPos++
end while
numCells ← endPos-1
{Compute difference in height and possible redistribution}
diffH ← Cs(endPos).h− currH
extraH ← min(RA/numCells, diffH)
{Redistribute water to selected cells and compute new height}
Ci.x← Ci.x+ extraH ∀i, s(i) < endPos
currH ← currH + extraH
{Recompute remaining accumulation}
RA← RA− numCells ∗ extraH
end while
{ Distribute the leftout water to all cells}
if (RA > 0)
Ci.x← Ci.x+RA/n, ∀[i]n1
end if

Fig. 3. Delineation of Brunei area into 1358 watersheds

to the worker nodes and for aggregating the output of all the
worker nodes.

The basins are assigned and processed as follows. Idle
worker nodes send short messages to the master indicating
their availability as well as the maximum basin size that they
can currently process. This maximum basin size is a heuristic
estimate based on the relative ratio of the product of the
number of cells in the basin and the number of attributes that

409



need to be kept in memory versus the available memory on that
node. Such a size-based selection criterion is especially useful
when spreading the workload across a heterogeneous cluster.
On receiving the worker request, the master answers it with an
ACK followed by description of a basin smaller than the size
requested by the worker node or a NACK in case there is no
such basin available indicating that the worker can shut down.
The cost of transferring of this basin description is negligible.
The worker node processes the assigned basin using the water
distribution algorithm described in Section IV. On completion,
it writes out the simulation output and signals its availability to
the master node. Once all the basins are processed, the master
node aggregates all the partial output files, producing a series
of images representing the water accumulated on the surface
after each simulation step.

Algorithm 2 Distributed processing

Trigger− Simulation Starts : In MasterNode

Create a list of all basins sorted in descending order of size
while list of unassigned basins 6= ∅
Receive request (with maxBasinSize) from idle node ni

Identify basin B for node ni based on maxBasinSize
if (B 6= NULL)
Send ACK and details of basin B to the node ni.
else
Send NACK to node ni

end if
end while
Wait for workers to complete
Aggregate the worker output grids

Trigger− Simulation Starts : In WorkerNode

Compute maxBasinSize based on available memory
Send a request for basin with maxBasinSize
Receives ACK with basin details or NACK
while master response is ACK
Set up the grid using the DEM for the basin.
Initialize the accumulation for each grid cell to 0.
for each time instant,
Update cell accumulation with surface-runoff.
Scan grid row-wise, do Distribute water() for every cell.
end for
Send the output of basin simulation to master node
Compute maxBasinSize based on available memory
Send a new request for basin with maxBasinSize
Receives ACK with basin details or NACK
end while

C. Shared Memory Parallelization

A very large fraction of the total simulation time is spent on
routing water amongst the grid point within watershed basins.
For instance, the routing time for the domain with basin size
9456x7390 contributed to nearly 84% of the total simulation
time. As the time intervals get shorter, the computational
effort for routing becomes even more dominant. Therefore,
in addition to the watershed basin based parallelization across
multiple nodes described in Section IV-B, we also consider

a shared memory based parallelization of a single watershed
basin across multiple OpenMP threads.

The key idea in such a shared memory parallelization
approach is to partition the domain into disjoint sub-areas such
that each sub-area is independently processed by a separate
OpenMP thread. In order to achieve effective parallelization
of the flood routing simulation, we need to address two main
challenges:

• Partitioning irregular shaped domains. Watershed
basins typically tend to be highly irregular in shape as
shown in Figure 4. Direct domain decomposition of
an irregular grid into possibly irregular sub-regions is
non-trivial. On the other hand, mapping it to a regular
grid structure results in grid cells that are not required
for simulation, in turn leading to wasted computation,
and additional book-keeping. Further, partitioning the
resulting regular grid into sub-areas based on grid
points alone might result in heavy load imbalance
among the threads.

• Handling race conditions. Another important cause
for concern is that even though the tiles are all
processed independently, the parallel processing of
the shared domain introduces race conditions at the
common tile boundaries. It is, therefore, important to
ensure that threads responsible for processing neigh-
boring tiles have mutually exclusive access to the
boundary cells.

In our current work, we adopt a relatively straightforward
approach to address the above two issues by mapping the ir-
regular watershed basins to rectangular grids, partitioning each
rectangular grid into rectangular tiles (possibly of different
tile size, but nearly equal workload) one for each thread, and
adopting a quadrant-based synchronization to ensure no con-
flicts among threads processing neighboring tiles. We discuss
the main elements of our approach in more detail below.

Domain Embedding and Tile Layout. For each watershed
basin, we consider the bounding rectangular grid (see Figure 4)
as the shared domain to parallelize. This rectangular domain
is then divided into rectangular tiles based on the intended
degree of parallelization such that each thread gets a single
tile. The tiles are constructed following a two level splitting
process: first into vertical slices with each vertical slice further
split into an equal number of horizontal ones. Let N be the
number of threads and hence, the desired number of tiles.
Then, the number of horizontal and vertical partitions (Nx

and Ny respectively) have to be chosen such that NxNy = N .
The factors are picked so that Nx ' Ny . Lastly, to ensure a
balanced aspect ratio for each individual tile, the factors Nx

and Ny are assigned to dimensions so that the larger dimension
of the rectangular domain has more partitions. For instance, for
a domain of size 1200× 500 with 32 threads, we pick a 8× 4
tile layout since that is integral factorization with the closest
factors (compared to other possibilities (1,32), (2,16)), and
assign the larger number of partitions to the longer dimension
(i.e. 8 to 1200).

Balancing Tile Workloads. Typically, given the tile layout
Nx×Ny , partitioning a rectangular domain into tiles is trivial.
However, as pointed out earlier, only a small fraction of

410



grid points of the original rectangular domain are required
for simulating the original watershed basin due to which the
trivial decomposition leads to load imbalance. To achieve load
balancing, we explicitly keep track of the valid grid points,
which include any point in the original watershed basin with a
valid height value (considering the possibility of some missing
values). The tiles are constructed so as to have nearly equal
number of valid grid points.

Let mx×my be the size of the rectangular grid. Let C(i, j)
denote the number of valid grid points in the sub-grid with
corners [(0, 0), (i, 0), (0, j), (i, j)] inclusive of the boundaries.
The total number of valid grid points in the grid is thus
Ctot = C(mx,my) and valid grid points up to and including
the ith column is C(i,my). Since the tile construction involves
a vertical slicing followed by a horizontal slicing of each of
the vertical slices, given a tile layout Nx × Ny , we need to
determine the vertical boundaries {px(g), [g]Nx

1 } as well as
the horizontal boundaries {py(h, g) [h]

Ny

1 , [g]Nx
1 }.

To ensure nearly equal distribution of valid points, the gth

vertical boundary px(g) is picked so that it is the smallest
column index such that the number of valid grid points over
all rows and up to the px(g)

th column exceeds gCtot

Nx
, i.e.,

C(px(g)− 1,my) <
gCtot

Nx
≤ C(px(g),my), [g]Nx

1 .

Similarly, for each vertical slice (say the gth one), we pick the
hth horizontal boundary py(g, h) such that it is the smallest
row index such that the number of valid grid points on all the
columns in the slice and up to the py(g, h)

th row exceeds h
Ny

fraction of the total valid points in the slice.

C(px(g), py(g, h)− 1)− C(px(g − 1), py(g, h)− 1)

<
h

Nx
(C(px(g),my)− C(px(g − 1),my))

≤ C(px(g), py(g, h))−C(px(g−1), py(g, h)) [g]Nx
1 , [h]

Ny

1 .
(1)

We implement the above partitioning efficiently by storing
and reusing the results of prior computations. Fig 5 shows the
tiles formed for 8 threads over a watershed basin of resolution
9456x7389 with 35234396 total valid points and a 4x2 tile
based partitioning. Table I summarizes the valid cells in each
of these tile. As one can see, the tiles have nearly equal number
of valid points.

Quadrant-based Synchronization. Lastly, to handle race
conditions, we divide each tile into quadrants, or in other
words, even smaller tiles following a 2x2 layout. Due to
the rectangular shape of the tiles, there can be at most four
neighbors that have common boundary grid points with the
boundary point belonging to a different quadrant in each of
the neighbors. Given a specific quadrant position (1 out of
4 possible choices), there are no shared boundaries between
the corresponding quadrants of the different tiles. Hence,
we treat the quadrants as the basic unit of work for each
thread and process the four quadrants following a strict order
with the execution of each quadrant synchronized amongst
threads by a barrier to ensure work isolation. Since there
is synchronization after each quadrant processing, it is also

Fig. 4. Watershed domains delimited by bounding boxes

TABLE I. LOAD BALANCING W.R.T. VALID CELLS WITH 8 THREADS
FOR WATERSHED GRID OF RESOLUTION 9456X7389 AND 35234396 VALID

POINTS

Tile Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 Total Cells
T1 1103017 1101667 1101305 1099840 4405829
T2 1101628 1101660 1100930 1099602 4403820
T3 1102112 1101258 1102001 1100100 4405471
T4 1102209 1101374 1101050 1100593 4405226
T5 1101965 1101492 1101022 1101492 4405971
T6 1101492 1101342 1101492 1099158 4403484
T7 1101881 1101030 1101705 1099184 4403800
T8 1101000 1100294 1100519 1098982 4400795

important to ensure that the workload of a specific quadrant
across the tiles is nearly equal. As the tiles are already nearly
equal in the number of valid points, we achieve quadrant-level
load balance by splitting the tile into quadrants with nearly
equal number of valid points. This splitting procedure of tiles
into quadrants (sub-tiles) is done in exactly the same manner
as the splitting of the 2D grid into tiles following a 2 x 2 layout
(i.e., a single horizontal slice with each slice having a single
vertical split). Note that as a side effect of parallelization,
we may read obsolete values of neighboring grid points for
processing boundary points, but there are negligible effects due
to adjustments over multiple passes. Table I shows the load-
balanced quadrants within each of the 8 tiles corresponding to
the 8 threads for the watershed basin (9456x7389) referenced
earlier.

V. EMPIRICAL EVALUATION

In this section, we describe experimental evaluation of the
proposed parallelization strategies on two real-world domains.

A. Empirical Setup

Hardware Configuration. For our experiments, we used two
different hardware configurations. The first configuration is a
Power 750 express server consisting of 32 Power7+ processor
cores, running Red Hat Enterprise Linux version 6.4. Each
3.3 GHz core has a 256 KB L2 cache and a 10 MB L3 cache
with 256 GB of total RAM. The second configuration is a Dell
Precision T7600 system having 8 core Intel Xeon processors
running 64 bit Ubuntu 12.04 LTS. This machine has a higher

411



2659 

5832 

5658 

5321 

3102 

7389 

4318 

5555 

1751 

1999 

2641 4542 
3438 

5419 

3347 

0 

3336 

1854 

7875 

7621 

6774 9455 
7855 

7844 

1605 

0 

1751 

3592 

3592 

5658 

4633 

3634 

4260 

3646 

2634 T1 

T8 

T3 

T5 

T7 

T6 

T2 

T4 

Q2 Q4 

Q1 

Q3 

Q1 

Q1 

Q1 

Q1 

Q1 

Q1 

Q1 Q3 

Q3 

Q3 Q3 

Q2 Q4 

Q4 

Q2 Q2 Q2 

Q3 

Q4 Q4 

Q2 Q4 

Q3 

Q3 

Q4 

Q2 

Q2 

Q4 

Fig. 5. Tile and quadrant based partitioning with 8 threads for watershed basin of resolution 9456x7389. The thick lines show the tile boundaries while thinner
lines show the quadrant boundaries. The numbers represent the coordinates of tiles and quadrants(bold numbers representing the tile coordinates).

20MB cache for all the 2GHz processor cores, supports hyper-
threading, and has 256 GB DDR3 RAM. Both these machines
provide uniform memory access and hence memory access
performance is ignored in this study. We primarily considered
these configurations since a large fraction of high performance
computing systems are based on Intel and Power architectures.
The flood modeling software was compiled using the same
compilers on both the systems. Specifically, we used the GNU
compiler collection with -O3 optimization since these are
two very different architectures and have dedicated compiler
backends that exploit the hardware features better.

Domains. We consider two real world domains with different
characteristics.
Brunei-MPI. The operational flood model in Brunei uses a
DEM of size 1688x1318 derived from global 90m SRTM data.
This domain has 1358 watershed basins as shown in Figure 3.
We primarily use this domain to show the benefits of our MPI
based parallelization of the basins. For all simulations using
this domain, we used the precipitation forecast from a hindcast
of the heavy flooding event in January, 2009. We also test our
hybrid MPI/OpenMP implementation on this domain.

Rio de Janeiro-OpenMP. We extracted a large basin of size
9456 × 7390 from the 1m resolution LiDAR data for the city
of Rio de Janeiro. In early April 2010, Rio endured the worst
rainstorms in 48 years, which was considered one of the most
significant, global weather events of 2010. We performed a
hindcast using our high resolution weather model and obtained
estimates of precipitation which were used as input to the flood
model.

B. Scaling of MPI Implementation

Figures 6 and 7 show the scaling of our distributed memory
implementation on the Power and Intel machines on the Brunei
domain with 1358 watersheds. We observe that the speedup
flattens for 8 and more processors. This is due to the fact that
there are 4 large basins that occupy about 19%, 14%, 12.5%,
and 7.5% of the total area covered by the domain. Towards
the end of the simulations, these 4 basins are a major cause of
load imbalance since all but four processors are idling. Hence,
we observe a drop in speedups for 8 and more processors.

C. Scaling of OpenMP implementation

Figure 8 shows the speedups obtained for our OpenMP
based parallelization on the Rio de Janeiro domain. Since
the OpenMP parallelization is applicable only for the route
water part, we also show the speedups obtained for the routing
part alone. We obtain very good scaling of up to 13× on 16
threads for our threaded implementation on the Intel machine.
However, the reduced speedups for the total time taken for this

0	  

1	  

2	  

3	  

4	  

5	  

6	  

2	   4	   8	   16	  

Sp
ee
du

p	  
	  

Number	  of	  Workers	  

	  Total	  Time	  

	  Rou>ng	  Time	  

Fig. 6. MPI: Speedup on Power for Brunei domain.

412



basin suggest that the sequential components are becoming a
bigger fraction of the total time. We observe similar scaling
behavior on the Power machine.

D. Scaling of Hybrid Implementation

We also compare the speedup of hybrid implementation
on both the hardware configurations using a maximum value
of 16 for workers× threads combination since this was the
maximum number of threads available on the Intel machine.
Tables II and III show the speed up achieved on the Intel ma-
chine for total and routing times respectively. We had already
noticed that beyond 8 workers, the maximum speedup that
can be obtained for this domain is 6.5 pointing to diminishing
returns for the single thread case. However, with the hybrid
version, we are able to extract a speedup of up to 10.4× for
the total time.

However, when one considers just the routing time, we
observe a maximum speedup of 10.6× obtained for the com-
bination of 4 workers and 4 threads. This is mainly due to the
combined effect of higher speedups for the OpenMP enabled
sections and the small number of moderate sized basins for
this test case. Initial results indicate that our hybrid approach
will do well in situations with higher number of large sized
basins. The best combination of workers and threads will be
a function of the total number of basins, average size of large
basins as well as the number of large basins.

Tables IV and V show similar behavior for the Power ma-
chine. We note that there is a slight difference in the speedups
for the two machines. This difference can be attributed to the
fact that the configurations for both these systems are different
and we have not explored all possible architecture specific fine-
tuning for the respective systems.

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  

2	   4	   8	   16	  

Sp
ee
du

p	  
	  

Number	  of	  Workers	  

Total	  Time	  

Rou?ng	  Time	  

Fig. 7. MPI: Speedup on Intel Xeon for Brunei domain.

0	  
2	  
4	  
6	  
8	  

10	  
12	  
14	  

2	   4	   8	   16	  

Sp
ee
du

p	  
	  

Number	  of	  Threads	  

Total	  Time	  

Rou;ng	  Time	  

Fig. 8. OpenMP: Speedup on Intel Xeon for Rio de Janeiro domain.

TABLE II. SPEEDUP W.R.T. TOTAL TIME ON INTEL XEON FOR BRUNEI
DOMAIN.

1 thread 2 threads 4 threads 8 threads 16 threads
1 Worker 1 1.5 2.2 2.5 3.1
2 Workers 2 3.3 3.7 5.2 –
4 Workers 4 5.8 8.7 – –
8 Workers 6.5 10.4 – – –

16 Workers 6.5 – – – –

TABLE III. SPEED UP W.R.T. ROUTING TIME ON INTEL XEON FOR
BRUNEI DOMAIN.

1 thread 2 threads 4 threads 8 threads 16 threads
1 Worker 1 1.7 3.2 4.2 7.6
2 Workers 2 3.8 4.9 9.4 –
4 Workers 4 6.5 10.6 – –
8 Workers 4.5 8.3 – – –

16 Workers 4.8 – – – –

VI. CONCLUSION & FUTURE WORK

Operational flood forecasting is an extremely important
problem requiring highly scalable high resolution integrated
modeling approaches. Our current work presents such an
integrated modeling system comprised of weather models,
soil models and routing engine. In particular, we focus on
the routing process which is the most compute intensive and
propose parallelization strategies to scale it up to large grid
sizes. First, we make use of naturally occurring parallelism in
flood routing via a master slave model of parallelization for
distributed processing of the basins. We also propose an intra-
basin shared memory parallelization approach using OpenMP.
Empirical evaluation of the proposed parallelization strategies
indicates a potential for high speedups for certain types of
scenarios (e.g., speedup of 13× with 16 threads using OpenMP
parallelization for the large Rio de Janeiro basin).

In future, we plan to develop a completely distributed mem-
ory approach even for intra-basin parallelization, which would
be essential in order to use LiDAR data based DEM (which is
much more fine-grained than the current coarse SRTM based
topography). Such an approach will also permit the routing
engine to be ported to large scale supercomputers such as the
Blue Gene P/Q. Another possible direction of exploration is a
hybrid approach that combines inter-basin MPI/OpenMP, intra-
basin MPI/OpenMP in a single simulation depending on the
characteristics of the domain and the constituent basins. Lastly,
there is also scope for optimizing the basic water routing
algorithm itself by an intelligent exploration of the subsets
of the cells with non-zero accumulation.

TABLE IV. SPEED UP W.R.T. TOTAL TIME ON POWER FOR BRUNEI
DOMAIN.

1 thread 2 threads 4 threads 8 threads 16 threads
1 Worker 1 1.4 1.8 2.7 3.4
2 Workers 2 2.7 3.5 5.6 –
4 Workers 4 6.3 7.8 – –
8 Workers 5.6 9.2 – – –

16 Workers 5.6 – – – –

TABLE V. SPEED UP W.R.T. ROUTING TIME ON INTEL XEON FOR
BRUNEI DOMAIN.

1 thread 2 threads 4 threads 8 threads 16 threads
1 Worker 1 1.5 2.0 3.6 5.0
2 Workers 2 2.9 3.9 7.3 –
4 Workers 4 6.5 8.7 – –
8 Workers 4.9 8.1 – – –

16 Workers 4.9 – – – –

413



ACKNOWLEDGMENT

The authors would like to thank the city of Rio de Janeiro
and the Instituto Pereira Passos for the availability of the
high resolution dataset used for the experiments shown in
this paper. We would also like to thank UBD|IBM Centre,
Universiti Brunei Darussalam for providing access to the
weather forecasting service and the Intel machine used for this
work.

REFERENCES

[1] “Natural catastrophes worldwide : Percentage dis-
tribution for year 2012.” [Online]. Available:
http://www.munichre.com/app pages/www/res/pdf/NatCatService

[2] M. Pitt, Learning lessons from the 2007 floods : An independent review.
[Online]. Available: http://www.cabinetoffice.gov.uk/thepittreview.aspx.

[3] W. C. S. et al., “A description of the Advanced Research WRF version
3,” NCAR Technical Note TN-475, 2008.

[4] C. Vreugdenhil, Numerical Methods for Shallow-Water Flow, ser.
NATO Asi Series. Series C, Mathematical and Physical Science.
Springer, 1994.

[5] J. M. et al., “WRF Nature Run,” in SC, 2007.
[6] P. Malakar, T. George, S. Kumar, R. Mittal, V. Natarajan, Y. Sabhar-

wal, V. Saxena, and S. S. Vadhiyar, “A divide and conquer strategy
for scaling weather simulations with multiple regions of interest,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 37:1–
37:11.

[7] E. Todini, “The ARNO rainfallrunoff model,” Journal of Hydrology,
vol. 175, no. 14, pp. 339 – 382, 1996.

[8] M. A. Gill, “Flood routing by the Muskingum method,” Journal of
Hydrology, vol. 36, no. 34, pp. 353 – 363, 1978.

[9] J. A., H. Reuter, A. Nelson, and E. Guevara, “Hole-filled SRTM for
the globe, version 4,” 2008. [Online]. Available: CGIAR-CSI SRTM
90m Database (http://srtm.csi.cgiar.org).

[10] G. Priestnall, J. Jaafar, and A. Duncan, “Extracting urban features from
LiDAR digital surface models,” Computers, Environment and Urban
Systems, vol. 24, no. 2, pp. 65 – 78, 2000.

[11] L. A. Treinish, A. P. Praino, J. P. Cipriani, U. T. Mello, K. Mantripra-
gada, L. C. V. Real, P. A. Sesini, V. Saxena, T. George, and R. Mittal,
“Enabling high-resolution forecasting of severe weather and flooding
events in Rio de Janeiro,” IBM Journal of Research and Development,
vol. 57, no. 5, 2013.

[12] P. Malakar, V. Saxena, T. George, R. Mittal, S. Kumar, A. Naim,
and S. A. b. H. Husain, “Performance evaluation and optimization of
nested high resolution weather simulations,” in Euro-Par 2012 Parallel
Processing, ser. Lecture Notes in Computer Science, C. Kaklamanis,
T. Papatheodorou, and P. Spirakis, Eds. Springer Berlin Heidelberg,
2012, vol. 7484, pp. 805–817.

[13] J. Neal, T. Fewtrell, and M. Trigg, “Parallelisation of storage cell flood
models using OpenMP,” Environmental Modelling & Software, vol. 24,
no. 7, pp. 872 – 877, 2009.

[14] B. F. Sanders, J. E. Schubert, and R. L. Detwiler, “ParBreZo: A
parallel, unstructured grid, Godunov-type, shallow-water code for high-
resolution flood inundation modeling at the regional scale,” Advances
in Water Resources, vol. 33, no. 12, pp. 1456 – 1467, 2010.

[15] J. C. Neal, T. J. Fewtrell, P. D. Bates, and N. G. Wright, “A comparison
of three parallelisation methods for 2D flood inundation models,”
Environ. Model. Softw., vol. 25, no. 4, pp. 398–411, Apr. 2010.

[16] D. Yu, “Parallelization of a two-dimensional flood inundation model
based on domain decomposition,” Environmental Modelling & Software,
vol. 25, no. 8, pp. 935 – 945, 2010.

[17] S. Zhao, W. Cheng, C. Zhou, X. Chen, S. Zhang, Z. Zhou, H. Liu, and
H. Chai, “Accuracy assessment of the ASTER GDEM and SRTM3
DEM: an example in the Loess Plateau and North China Plain of
China,” Int. J. Remote Sens., vol. 32, no. 23, pp. 8081–8093, Dec. 2011.
[Online]. Available: http://dx.doi.org/10.1080/01431161.2010.532176

[18] F. Nachtergaele and N. Batjes, Harmonized World Soil Database.
FAO/IIASA/ISRIC/ISSCAS/JRC, 2012.

[19] T. Kawanishi, H. Kuroiwa, M. Kojima, K. Oikawa, T. Kozu, H. Ku-
magai, K. Okamoto, M. Okumura, H. Nakatsuka, and K. Nishikawa,
“TRMM precipitation radar,” Advances in Space Research, vol. 25,
no. 5, pp. 969–972, 2000.

[20] L. Wang and H. Liu, “An efficient method for identifying and filling
surface depressions in digital elevation models for hydrologic analysis
and modelling,” International Journal of Geographical Information
Science, vol. 20, no. 2, pp. 193–213, 2006.

[21] X. Chu, J. Zhang, Y. Chi, and J. Yang, “An improved method for
watershed delineation and computation of surface depression storage,”
in Watershed Management 2010: Innovations in Watershed Management
Under Land Use and Climate Change. Madison, Wisconsin, USA:
American Society Of Civil Engineers, 2010, pp. 1113–1122.

[22] Y. Ma, S. Feng, D. Su, G. Gao, and Z. Huo, “Modeling
water infiltration in a large layered soil column with a
modified Green-Ampt model and HYDRUS-1D,” Comput. Electron.
Agric., vol. 71, pp. S40–S47, Apr. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.compag.2009.07.006

[23] M. Abrams, “The Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER): data products for the high spatial resolution
imager on NASA’s Terra platform,” International Journal of Remote
sensing, vol. 21, no. 5, pp. 847–859, 2000.

[24] G. R. Brakenridge and D. Karnes, “The Dartmouth Flood Observatory:
an electronic research tool and electronic archive for investigations of
extreme flood events,” in Geoscience Information Society Proceedings,
1996.

[25] SAGA Development Team, System for Automated Geoscientific
Analyses (SAGA GIS), Germany, 2008. [Online]. Available:
http://www.saga-gis.org/

414


