
A Lightweight and Efficient Mechanism for Fixing the
Synchronization of Misaligned Subtitle Documents

Rodrigo Laiola Guimarães
IBM Research

Rua Tutóia 1157
04007900 São Paulo, Brazil

+55 11 2132 2283
rlaiola@br.ibm.com

Priscilla Avegliano
IBM Research

Rua Tutóia 1157
04007900 São Paulo, Brazil

+55 11 2132 5790
pba@br.ibm.com

Lucas C. Villa Real
IBM Research

Rua Tutóia 1157
04007900 São Paulo, Brazil

+55 11 2132 4548
lucasvr@br.ibm.com

ABSTRACT
Online subtitle databases allow users to easily find subtitle
documents in multiple languages for thousands of films and TV
series episodes. However, getting the subtitle document that gives
satisfactory synchronization on the first attempt is like hitting the
jackpot. The truth is that this process often involves a lot of trial-
and-error because multiple versions of subtitle documents have
distinct synchronization references, given that they are targeted at
variations of the same audiovisual content. Building on our
previous efforts to address this problem, in this paper we
formalize and validate a two-phase subtitle synchronization
framework. The benefit over current approaches lays in the usage
of audio fingerprint annotations generated from the base audio
signal as second-level synchronization anchors. This way, we
allow the media player to dynamically fix during playback the
most common cases of subtitle synchronization misalignment that
compromise users’ watching experience. Results from our
evaluation process indicate that our framework has minimal
impact on existing subtitle documents and formats as well as on
the playback performance.

CCS Concepts
• Information systems ➝ Multimedia information systems,
Speech / audio search • Applied computing ➝ Document
management and text processing, Document metadata,
Document preparation, Annotation, Format and notation,
Multi / mixed media creation.

Keywords
Subtitles; Audio fingerprinting; Synchronization; SRT.

1. INTRODUCTION
Downloading a subtitle document from the Internet and playing it
alongside audiovisual content (e.g., a movie or a TV series
episode) is not rocket science; but it sure can feel that way
sometimes. Considering a user already has the media file on his or
her local device and that s/he has identified multiple versions of
potential subtitle documents on an online repository, s/he still has

to figure out which of such files gives satisfactory
synchronization. The problem is that even with the efforts of
online communities to review and correct user-contributed subtitle
documents as well as media players that try to download suitable
subtitle documents automatically, the user may still run endless
times into versions that do not sync up perfectly with the base
audiovisual content. The underlying problem is that even if the
synchronization is off for just a couple of seconds, misaligned
subtitle entries will most probably be a constant annoyance.

Take Figure 1 as an example. Here, we illustrate the playback of 2
subtitle documents with the corresponding audiovisual content
(track in light blue with dot pattern). Figure 1.a represents the
ideal scenario where subtitle entries (in yellow with line pattern)
are perfectly synchronized with the base content. On the other
hand, in Figure 1.b the timing of all subtitle entries (in orange
with line pattern) are shifted ∂t seconds. Note that this latter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DocEng '16, September 12 - 16, 2016, Vienna, Austria.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4438-8/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2960811.2960812

(a)

(b)

Figure 1. Playback of audiovisual content together with
subtitle documents using a local media player: a) subtitle
entries with perfect timing and b) shifted ∂t seconds.
Screenshots extracted from “Ridley Scott + IBM Watson: A
Conversation”. Available at https://youtu.be/KDtxQRH8aI4.

subtitle document may have been created using a variation of the
original audiovisual content (e.g., a version including
advertisements in the beginning). The point is that, although this
second document is a potential match, even minor
synchronization misalignments might compromise the entire
experience. In this context, we consider the scenario in which
once a candidate subtitle document has been identified – not
necessarily only the one synchronized to the letter – the viewer
can obtain satisfactory synchronization. Our ultimate goal is to
provide the media player the ability to dynamically adjust the
presentation of the subtitle document in Figure 1.b, so that the
experience from the viewer’s perspective looks just like the one in
Figure 1.a. By supporting this functionality we expect to minimize
the burden on the viewer before the fun starts (after all, this is
what really matters).

In previous work, we performed a qualitative analysis of several
subtitle documents for a popular movie and TV series episode in
order to understand the problem domain [20]. This process
allowed us to identify some common types of synchronization
problems users1 face when playing audiovisual content together
with subtitle documents downloaded from the Internet. To address
these issues (i.e., constant and varying temporal offsets) we
proposed a two-phase subtitle synchronization mechanism to 1)
enrich subtitle documents with audio fingerprint2 annotations
generated from the base audio signal, that later can serve as
second-level synchronization anchors for the media player to 2)
adjust misaligned subtitle entries during playback.

In this work, we reflect on our previous findings and look at the
subtitle misalignment problem from a document engineering
perspective. As our first contribution, we formalize a lightweight
method that annotates subtitle documents with representative
audio fingerprints. We show that the impact of such method to
enrich existing subtitle documents and formats is relatively small.
As our second contribution, we propose an algorithm that
dynamically adjusts the synchronization of misaligned subtitle
entries during playback. Experiments with a proof of concept
application that realizes the proposed framework indicate that our
solution does an efficient use of computational resources.

In particular, the requirements and constraints that motivated our
design choices include:

i. Minimize user effort: to be practical, the proposed
framework must fix the synchronization of misalignment
subtitle documents with minimal user input. That seems to
make good sense, specially if users spend much more time
than necessary in a process that can be automatized;

ii. Ensure copyright compliance: the proposed framework
should retain the base video integrity, either in terms of
editing, removing or adding third-party material to the base
audiovisual content, as well as avoid infringing the
copyrights in the reuse and reproduction of unauthorized
portions of the audio stream;

1 The terms ‘user’ and ‘viewer‘ will be used interchangeably in

this paper to describe regular people who operate computer
software with minimal technical expertise or previous training.

2 An audio fingerprint is a compact content-based signature that
summarizes an audio sample with a predefined length.
Especially, it does NOT represent the audio signal at a specific
point in time.

iii. Be backward compatible: a video player that does not
implement the proposed framework should process a new
version of the subtitle document containing second-level
synchronization anchors in the same way as an older
version of such document that does not include audio
fingerprint annotations. Similarly, new video players should
be capable of processing subtitle documents without
synchronization anchors;

iv. Minimize the impact on subtitle documents and formats: the
effect of inserting synchronization anchors based on audio
fingerprints should be minimized not only in terms of
extending the specification of existing subtitle formats and
storage costs, but also in regards with the playback
performance; and

v. Handle different types of subtitle misalignment problems:
the methods to annotate and fix the presentation of subtitle
documents enriched with audio fingerprint annotations
should be general enough to address the different types of
synchronization problems identified in our initial findings.

This paper is organized as follows. In Section 2 we contextualize
and motivate our work. Next, in Section 3 we introduce a general
framework that addresses the most typical cases of subtitle
synchronization misalignment. In brief, the proposed approach
consists of 2 steps. Firstly, the enrichment of exiting subtitle
documents with representative audio fingerprint annotations
generated from the based audio signal; and subsequently, the
resynchronization of misaligned subtitle entries during the
playback of a variation of the original audiovisual content. Then,
Section 4 reports on the design and implementation of a proof of
concept that realizes our contributions, whereas Section 5 presents
its evaluation process. Finally, Section 6 reviews our contribution
in the light of related work and Section 7 is dedicated to
concluding remarks and future work.

2. BACKGROUND
The lifecycle of subtitles can be analyzed from different
perspectives. In professional post-production, extensive support is
typically available for professionals to create and synchronize
subtitle entries along with the base audiovisual content. The result
from this process can be either burned-in in the base content or
encapsulated with other data streams (including subtitle
documents in other languages) in a container format3 and
distributed on DVDs4, Blu-Rays, broadcast television, or on-
demand video services. Given that all data is wrapped (and
distributed) in a single and self-contained unit, synchronization
problems5 like the ones discussed in this paper are not expected
during playback.

Non-professionals can also create subtitle documents, although
this task can be timing consuming. Sharing the resulting subtitle
documents on the Web is particularly common for popular movies
and TV series episodes shared online. As these subtitle documents

3 Wrapper format whose specification describes how different

media types and metadata coexist in a computer file.
4 Some technologies, if unknown, could easily be identified via an

online search; therefore they will not be Web-referenced.
5 Videos with high resolutions may still not play smoothly on

devices with limited computational resources, which may result
in a slight synchronization misalignment not only of subtitle
entries but also between the audio and video streams.

are often distributed separately from the reference audiovisual
content, recipients may face difficulties in finding the version that
offers satisfactory synchronization (vide Figure 1). It is important
to mention that the existence of multiple versions of subtitle
documents may reflect the various editions of the original
audiovisual content that may or not include an opening intro,
scenes from previous or next episodes, advertisements, and so on.
As we will show in the following sections, it is exactly in this
scenario that we propose a lightweight and efficient mechanism
for fixing automatically the synchronization of misaligned
subtitles documents.

2.1 Subtitle Formats on the Web
Bulterman et al. [3] presents an extensive analysis of several
subtitle formats, which according to them fall under 2 main
categories: embedded and external text formats. Embedded text
formats are tightly integrated with the host language. One
example of said format is SmilText, which contains intra-block
formatting and timing control, with the layout and general
rendering control defined in the Synchronized Multimedia
Integration Language (SMIL) [4].

External subtitle formats, on the other hand, encapsulate
information on synchronization and text styling in an external file
or document. Once in the possession of such document, the media
player parses its contents and renders the text entries on the screen
according to the timestamps and durations specified for each
entry. Below, we present some external subtitle formats that are
prominent on the Web.

WebVTT6 (Web Video Text Tracks Format) is a technology
introduced in HTML5 that can be used to display timed text tracks
with the HTML5 <track> element alongside <video> elements.
The file is text-based and contains essentially (i) a header, (ii) a
sequence of subtitle entries, and (iii) empty lines. Subtitle entries
have a numerical identification, starting and ending times, and a
textual payload. This format also admits text-formatting settings
such as text direction (e.g., left to right or the other way round),
rendering position, text size and alignment, and
bold/italic/underlined tags, to name a few. WebVTT also supports
comments by starting a line with the string “NOTE”. Said lines
are not rendered on the screen.

6 https://www.w3.org/TR/webvtt1/

SubStation Alpha7 (SSA) is a popular file format used in
conjunction with the Matroska MKV container to store subtitle
data along with video streams. The structure of an SSA document
is similar to an INI file: sections are declared with [brackets],
lines starting with a semicolon (;) are treated as comments, and
pairs of key:values are used to define subtitle metadata and
attributes. Attributes include formatting and styling, scaling,
rotation, and font names, among others. Actual subtitle entries are
described in an [Events] section that includes not only the
textual payload but also the position of the text, timestamps, and
effects. The format is rich in the sense that it enables the creation
of complex presentations, although the resulting subtitle document
file may not be adequate to be manually edited in a text editor due
to its size and relative complexity.

The most popular of the external text-based file formats in use
today is, by far, the SRT (SubRip Text). SRT is widely supported
by both a variety of players and subtitle creation programs.
Essentially, a SRT document contains the textual entries to be
displayed and the moment of that presentation. There is no
support for comments. Some media players recognize text-
formatting (bold, italic, underline, and font color) commands
entered with HTML tags. As illustrated in Figure 2, SRT is
comprised of three main elements: a sequence number (lines 02,
07, 11 and 16), the time in which the subtitle must appear and
disappear on the screen (lines 03, 08, 12 and 17), and the subtitle
text itself across one or more lines (lines 04-05, 09, 13-14 and 18).

2.2 Preliminary Findings
To identify common synchronization misalignment problems, in
previous work [20] we analyzed multiple versions of SRT
documents related to a highly rated movie and TV series episode
– according to the Internet Movie Database (IMDb). All
documents were obtained programmatically using the open API
(Application Program Interface) available on OpenSubTitles.org.
The rationale to analyze subtitle documents related to 2 different
productions was that in essence movies have a different structure
when compared to TV series. For instance, a TV series episode
may start with an opening intro or scenes from the previous
episode, and finish with a preview of the next episode.

For the referred movie, we obtained 193 SRT documents
distributed across 33 different languages (English, Brazilian
Portuguese, and Spanish were among the most frequents). In
general, these subtitle documents included advertisements and
credits information as actual subtitle entries. Interestingly, we
noticed that in several opportunities the very same subtitle
document had different file names and different creators listed in
the credits. This suggests that ownership infringement is a
recurrent problem in subtitle sharing communities on the Internet.

In our analysis for the episode of a popular TV series, we
collected 170 SRT documents in 38 different languages. In
contrast to the ones for the movie, the presence and absence of
prologues and epilogues was often observed and caused a
relatively large standard deviation at the presentation time of the
first subtitle entry (~45 seconds for an average of 88 seconds in
the case of the subtitle documents for Brazilian Portuguese).

In our analysis, we also found that some SRT documents are
extracted directly from DVDs and Blu-Rays, whereas others are
created using audiovisual content recorded from broadcast TV.
More importantly, we noticed that the main synchronization

7 https://www.matroska.org/technical/specs/subtitles/ssa.html

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

...
19
00:01:22,782 --> 00:01:27,221
RIDLEY SCOTT: I think that you're silly to be
pessimistic...

20
00:01:29,467 --> 00:01:34,172
WATSON: I’m working with humans to predict trends...

21
00:01:35,524 --> 00:01:37,248
RIDLEY SCOTT: Certainly better than world
domination.

22
00:01:37,688 --> 00:01:39,053
WATSON: Good one, Sir Ridley Scott.
...

Figure 2. Typical SRT document shared online. Each subtitle
entry includes a sequence number (in black), the time the text
should appear and disappear (in red, left and right side of the
‘-->’ token, respectively), and the textual content (in blue).

problem between different subtitle documents is a constant
temporal offset that shifts equally the presentation of equivalent
subtitle entries (as illustrated in Figure 1). This is the case, for
instance, if one SRT document is generated using an audiovisual
content that has a prologue; whereas another document is created
using a version of the same audiovisual content that does not
include such part.

To a lesser extent, we also observed that some subtitle documents
have a varying temporal offset. In this case, even when different
documents have the first subtitle entry temporally aligned, the
next entries increasingly get out of sync with each other. In other
words, it is like if the ∂t in Figure 1.b started equals zero but
increased over time. The causes of this problem suggest that
varying temporal offsets are related to different encoding offsets
(e.g., frame rate) used in the corresponding base contents.

Analyzing the collected data, we grouped the synchronization
misalignment problems between audiovisual content and subtitle
documents in 6 canonical cases8, as illustrated in Figure 3:

• Case 1 - Perfectly synchronized: the audiovisual content and
the subtitle document are in sync, or in other words, the
offset ∂t is equal to zero;

• Case 2 - Audiovisual content includes an initial part: such
part did not exist in the version used to generate the subtitle
document. In this case, during playback all subtitle entries
should be shifted an offset ∂t greater than zero;

• Case 3 - Audiovisual content trimmed in the end: the offset
∂t is equal to zero, but the subtitle document has entries that
do not have counterparts on the audiovisual content (these
are never exhibited during playback by the way);

• Case 4 - Audiovisual content trimmed in the beginning: the
initial subtitle entries in the document are not presented;
hence, the value of the offset ∂t is negative;

• Case 5 - Audiovisual content trimmed on both ends: only a
subset of the entries in the subtitle document should be
presented. As the initial entries would be discarded, the
offset ∂t should have a negative value;

• Case 6 - Audiovisual content with different pace: this is a
peculiar situation, possibly generated when the media file

8 Naturally, a combination of these canonical cases may apply in

some scenarios.

was encoded in another format. The subtitle entries start
with a given ∂t, but as time passes by, this value
increases/decreases.

3. GENERAL FRAMEWORK
The study presented in the previous section reinforces the
argument that finding a subtitle document that offers users
satisfactory synchronization is a very challenging task. The
several synchronization misalignment variations identified also
support our premise that a mechanism to automate the
synchronization of subtitle documents during playback is indeed
relevant and necessary. Therefore, to address this research
problem we propose a method that (1) enriches subtitle documents
with representative audio fingerprint annotations extracted from
the base audio signal during the authoring process and (2) adjusts
misaligned subtitle entries based on the comparison of audio
fingerprints during playback.

3.1 Enriching Subtitle Documents
The first step of our framework consists in automatically
annotating subtitle documents with representative audio
fingerprints, as illustrated in Figure 4.a. To do that, the authoring
software first extracts the audio signal from the base audiovisual
content. Then, it processes the extracted audio signal and
generates a number of audio fingerprints that are later
encapsulated, preferably as metadata, in the subtitle document. As
we will see ahead, such audio fingerprint annotations also include
the corresponding offset within the base audiovisual content, so
this information can be used during playback as second-level
synchronization anchors to fix the presentation of misaligned
subtitle entries.

To encompass all the 6 cases listed in Section 2.2, we make use of
3 synchronization anchors. The rationale behind this design
choice is the following. In fact, 2 synchronization anchors would
be enough to handle all the problems. However, as the audiovisual
content may have been trimmed in the beginning or in the end, we
propose the insertion of a fallback anchor. As a guideline, the
authoring software should extract three audio fingerprints
preferably near the beginning, near the middle, and close to the
end of the audio signal and then insert such fingerprints with the
corresponding offsets as annotations in the subtitle document. It is
worth mentioning that audio fingerprint annotations do not
necessarily need to be associated with an actual speech event.

3.2 Adjusting Misaligned Subtitle Entries
The second step of our framework takes place during the playback
of an enriched subtitle document along with an audiovisual

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Figure 3. Alignment scenarios when playing audiovisual content together with subtitle documents downloaded from the Internet.

content (see Figure 4.b). The process begins with the media player
opening the base audiovisual content and extracting the audio
signal. Complementary, the media player parses the subtitle

document, from where subtitle entries and audio fingerprint
annotations are read. Then, our algorithm, as illustrated in the
simplified pseudocode procedure of Algorithm 1, seeks the
synchronization anchors (denoted as the fingerprints array of
length 3 and its associated timestamps array indicating where the
fingerprints start) in the extracted audio signal (denoted as the
audio array with the decoded signal). This algorithm returns an
array containing three possible values for each fingerprint
comparison: NO_MATCH, MATCH, or LOCAL_MATCH.

First, our algorithm seeks to the exact offset described by each
synchronization anchor and generate an audio fingerprint from the
audio signal (line 07); if there is a match in the first attempt (line
08), the given synchronization anchor is indeed aligned (delta
variable is set to zero in line 09). Algorithm 1 then updates
match[i] with MATCH (line 12) and proceeds to the next anchor.
In case the audio fingerprint annotation does not match the
calculated fingerprint at the expected offset, our method increases
the size of the search window (lines 15-16) and performs a new
search (attempt variable equals 2). This new search consists in
generating all audio fingerprints in a predetermined timeframe
around the given offset and comparing each one of them	with the
referred audio fingerprint (local search). If the algorithm
successfully finds a match, it updates match[i] with
LOCAL_MATCH (line 12) and proceeds to the next anchor.
Otherwise, match[i] keeps the initial value (NO_MATCH).

The candidate subtitle document is perfectly synchronized with
the base audiovisual content only when the media player directly
finds matches for all synchronization anchors in the first attempt.
In case the media player performs a local search to find a match
(attempt variable equals 2), the difference between the offset
specified in the synchronization anchor and the one calculated
from the audio signal is taken into account in the verification of
the coming anchors (lines 09-11 in Algorithm 1). Therefore, even
if the first synchronization anchor is found through a local search,
the next anchors can still match perfectly if such difference of
offsets is considered in the calculations ahead.

In most cases, the adjustment action consists in propagating a
constant temporal offset (or delta) to all the subtitle entries
specified in the subtitle document. However, when the media
player finds two synchronization anchors via local searches, it is
the case in which the subtitle document and the base audiovisual
content have different presentation paces (varying temporal
offset). In this scenario, the player could interpolate the difference
between the offsets specified and calculated so that such
differences are distributed accordingly to all the subtitle entries
before, in between and after the synchronization anchors. Table 1
summarizes a naïve algorithmic procedure (Algorithm 2) and
adjustment actions for all the 6 cases presented in Section 2.2.

4. IMPLEMENTATION
We prototyped a proof of concept to investigate both the impact
of inserting audio fingerprint annotations into preexisting subtitle
documents and the performance implications associated with
dynamic adjustment of misaligned subtitle entries during
playback. For that we used the well-known VLC media player and
Chromaprint9, a client-side open source library written in C
implementing a custom algorithm for extracting audio fingerprints
from raw uncompressed audio data sources.

9 http://acoustid.org/chromaprint

(a)

(b)

Figure 4. General framework in two steps: (a) enrichment of
subtitle document with representative audio fingerprint
annotations and (b) dynamic adjustment of subtitle entries
based on fingerprints comparison.

Algorithm 1 Fingerprint seeking algorithm
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.

function seek(fingerprints, timestamps, audio):

 match = [NO_MATCH, NO_MATCH, NO_MATCH]
 for i = 1 to 3:
 nsecs = DEFAULT_FP_DURATION /* in secs */
 seek_offset = timestamps[i]
 for attempt = 1 to 2:
 test = captureFP(audio, seek_offset, nsecs)
 if test.matches(fingerprints[i]):
 delta = test.matchOffset()
 if delta != 0: /* propagate delta */
 for j=i+1 to 3: timestamps[j] += delta
 match[i] = attempt==1? MATCH : LOCAL_MATCH
 break
 else:
 nsecs = LOCAL_SEARCH_INTERVAL /* in secs */
 seek_offset = MAX(seek_offset - nsecs/2, 0)
 return match

Algorithm 2 Subtitle adjustment algorithm
01.
02.
03.
04.
05.
06.
07.
08.

/* actions variable corresponds to Table 1 */
function adjust(matches, actions):
 for i=1 to rows(actions):
 if matches[1] == actions[i].FirstAnchor and
 matches[2] == actions[i].MiddleAnchor and
 matches[3] == actions[i].LastAnchor:
 Process action at actions[i].Action
 return

The Chromaprint library works with spectrograms, which are
visual representations of the spectrum of frequencies in a sound as
these vary with time. Spectrograms can be calculated from
splitting the original audio into many overlapping frames and then
applying a Fast-Fourier transform (FFT) on them. In particular,
Chromaprint converts the input audio to the sampling rate of
11025Hz and using a FFT window size of 4096 (0.371s) with 2/3
overlap. It further processes the information by using a Short-time
Fourier transform and by converting frequencies into musical
notes. The result, which has 12 bins (one for each semitone of a
chromatic scale), is known as chroma features [1]. It is worth
mentioning that this representation of the audio is not radically
affected by differences between codecs, and more importantly, it
can be used to measure the similarity with other representations
(e.g., by calculating bit error rates). By moving a prefixed sliding
window over the spectrogram representation of the audio from the
left to the right, one pixel at a time, we can generate several sub-
images of that spectrogram. On each of the sub-images,
Chromaprint applies a pre-defined set of 16 filters that capture
intensity differences across musical notes and time (encoded into
2 bits for each filter using the Gray code). Following the same
process for each and every single sub-image, Chromaprint obtains
the full audio fingerprint.

Chromaprint needs about 3 seconds of audio samples to fill the
library’s internal buffers; consequently, a larger number of
samples are needed to generate enough sub-images. In our
prototype, we chose to capture 30 seconds of audio (herein
defined as N), which is sufficient to represent unique sequences of
audio events in a movie or TV series episode. To compute the
correlation between the captured and the reference fingerprints,
we check how many bit differences there are between the two. A

moving window accounts for temporal misalignment. As output,
we have the fingerprint offset from where the two fingerprints
match the best and how similar they are (i.e., a correlation
“score”). If the score obtained is greater than a given threshold,
we assume that the compared fingerprints match.

To deal with situations in which things like prologues and
epilogues are included or removed, we capture audio fingerprints
using a different time length every time the player does not find a
direct match, and therefore a broader local search is needed. For
local searches, we pick the standard deviation D presented in
Section 2.2 and make our sample size D+N+D.

In our prototype we chose to support the popular SRT subtitle
format, as shown in Figure 5. In order to keep backwards
compatibility with media players that do not include support for
audio fingerprint annotations, we decided to encapsulate
synchronization anchors as subtitle entries with zero duration
(note the starting and ending times in line 8). The keyword
@fingerprint@ (line 09) indicates the presence of the audio
signature introduced by our annotation technique. Note that such
information is stored in the same area that SRT reserves for the
text that must be exhibited on the screen.

5. EVALUATION
We conducted two studies to validate the core contribution of our
work. In the first, we analyzed the impact of inserting audio
fingerprint annotations into subtitle documents; whereas in the
second, we estimated the computational resources demanded to
generate audio fingerprints and to run the correlation routines that
detect matches between the reference and captured audio samples.

The impact on the document size is measured by the amount of
text introduced with the insertion of the audio fingerprint
annotation in the SRT file. An audio fingerprint is nothing more
than an array of integers – and that is the representation we use in
our software when we compute the correlation between two audio
signatures. When it comes to storing that information on the
subtitle document, however, that representation is not the most
adequate; it is both meaningless to users who inspect the subtitle
document as well as potentially long in number of characters
(spanning several lines in the document). For such reasons, we
encode the audio fingerprint as a Base64 string in the document.

Table 1. Adjustment actions in different scenarios.

First anchor Middle anchor Last anchor Case Action

Match - Match Case 1 None

Match - Local match Case 6 Interpolation

Match Match - Case 3 None

Match Local match - Case 6 Interpolation

Local match - Match Case 2 Offset
propagation

Local match - Local match Case 6 Interpolation

Local match Match - Case 5 Offset
propagation

Local match Local match - Case 6 Interpolation

- Local match Match Case 4 Offset
propagation

- Local match Local match Case 6 Interpolation

- Local match - Case 5 Offset
propagation

- - Local match Case 5 Offset
propagation

- - - - None

Note: the symbol ‘-’ applies either when a synchronization
anchor is not found or when there is no need to use it.

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

...
19
00:01:22,782 --> 00:01:27,221
RIDLEY SCOTT: I think that you're silly to be
pessimistic...

20
00:01:28,000 --> 00:01:28,000
@fingerprint@ AQAAjFEiSYmSJJGkAOKP7_hx4...

21
00:01:29,467 --> 00:01:34,172
WATSON: I’m working with humans to predict trends...

22
00:01:35,524 --> 00:01:37,248
RIDLEY SCOTT: Certainly better than world
domination.

23
00:01:37,688 --> 00:01:39,053
WATSON: Good one, Sir Ridley Scott.
...

Figure 5. SRT document including an audio fingerprint
annotation, where keyword @fingerprint@ is followed by a
Base64 string representation of such audio signal’s signature.

The length of the Base64 string varies according to the value of
the elements of the original array. As noticed in the process of
annotating 10 movies, the average size of one encoded audio
fingerprint was 247±4 ASCII characters. Therefore, when we
consider all 3 fingerprints captured along with the text that
describes their zero-duration timestamps and sequence numbers,
the average overhead added to each document is around 890
characters (or bytes). To put in perspective, in a regular movie
with about 1000 subtitle entries, these annotations would
represent just about 1% of the file size.

Next, we analyzed the amount of computational resources
demanded by our method. We chose a high-definition movie
featuring a H.264 video stream with 1920x800 resolution and an
AAC (LC) audio stream, and then observed CPU and memory
usage during a timespan of 120 seconds through a series of 10
runs. On the hardware side, the tests were performed on a dual-
core Intel i7-3520M running at 2.9GHz and with 6GB of main
memory. The software stack included our prototype (linked to
Chromaprint version 1.3.1 and to VLC media player library
version 2.2.1) and an operating system based on Linux 4.5. In
order to optimize cache performance, CPU affinity was
configured so that our prototype was bounded to the same
processing unit during its execution.

The percentage of CPU demanded to decode the video stream
(plotted with red filled squares in Figure 6) varies between 15%
and 48% for the short segment of the movie selected. This
variation reflects the complexity of the scenes; the smaller the
differences between a frame X and a frame X+1 the lesser
computing resources are used. Decoding the audio stream is a
much cheaper task, as the line with hollow circles shows (in blue).
In the moments filled with rich sounds, CPU usage goes up to 6%.
In a second moment, when music becomes less complex, audio
decoding demands drops to about 3% of processing power.
Standard deviation was not statistically significant, and therefore
it is not plotted in the figure.

In the lower part of Figure 6, the line with filled circles (in purple)
shows the percentage of CPU required to process the audio
fingerprints. The fingerprinting process begins with the
aggregation of audio packets into a buffer. The cost of that task is
very low and remains at 1-2% at all times. Once enough data has
been aggregated, Chromaprint computes the fingerprint of that
buffer and the result is compared with the reference fingerprint
(stored in the annotated SRT document). This process produces
the peaks at 18 seconds (with 18% of CPU consumption) and at
108 seconds (with 35% of CPU consumption) and lasts no more
than 125 milliseconds in our setup.

The difference between the two purple peaks is that in the first we
look for a perfect match between the reference and the computed
fingerprints. In other words, both audio fingerprints have the same
number of elements and represent the same amount of time. The
second peak shows the CPU demanded in a local search. In this
case, the aggregated buffer includes 45 extra seconds of sampling
before and after the reference timestamp of the fingerprint.
Because of this larger buffer size, the fingerprint comparison
demands the use of a sliding window and, as a consequence, the
processing power needed exceeds that of the former case.

Nevertheless, we note that this is a one-time task that can be
performed before the media file starts to be reproduced to the
user. Also, we note that media parsing for fingerprinting
computation purposes does not need to follow the presentation
timestamps (PTS). Consequently, users need to wait for no more

than a few hundred milliseconds before the subtitle document is
processed and adjusted (if it really needs be).

The impact on memory consumption (not shown in the figure) is
also relatively small, as all it takes is a few seconds of audio
samples in memory to buffer and capture the audio fingerprint.
When computing a local search (which demands more memory
than a perfect match), the amount of memory used by our
software is of no more than 4MB. In comparison, the audio
software decoding process has a baseline of 43MB. At its peak,
memory overhead relative to the baseline stayed at 8,5%. Such a
small footprint enables the use of our technique even in embedded
devices with limited amount of memory. In such a scenario, we
note that memory requirements can be further reduced by tuning
the local search window to smaller values.

6. RELATED WORK
Subtitles play an important role in making audiovisual content
accessible to everyone. For instance, it is often the case in which
subtitles are necessary to watch a movie or TV show in a noisy
environment (e.g., in an airplane) or when one is not familiar with
the language or accent in the audio streams. The truth is that the
benefits of subtitling go beyond speech information and
description of representative events in the audiovisual content. In
the literature, extant research has investigated the impact of
subtitles in terms of accessibility [11], cognitive load [14][15],
comprehension of foreign languages [17][18] and vocabulary
learning [13], to name a few. In the remaining of this section, we
review some representative efforts in the context of our work.

Hong et al. [11] propose a dynamic captioning10 approach, which
explores a set of technologies including face detection and
recognition, visual saliency analysis and text-speech alignment.
They investigate whether subtitles placed at suitable positions
help hearing-impaired people recognize speaking characters and
perceive the moods that are conveyed by the variation of volume.
Complementary, Wang et al. [21] propose a method to enrich the
visualization of videos with visual representation of non-verbal

10 Although the terms ‘captions’ and ‘subtitles’ do have different

meanings in some countries, such distinction is not relevant in
the context of this paper.

Figure 6. Processing power demands to process audio
fingerprints and to decode video and audio streams.

sounds. Their approach automatically transforms non-verbal video
sounds into animated words, and positions these near the sound
source objects in the video. The dynamics of the animation is
based on the intensification and attenuation of the sound volume,
whereas the animation positioning is computed using a 3D video
cost field of the input video depending on the position of the
sound source object. Yet in another effort, Brown et al. [2] use
eye-tracking data to investigate the effect of dynamic subtitles in
the viewing experience of subjects with hearing loss. Finally,
Hughes et al. [12] propose the use of responsive Web design
practices to rendering subtitles alongside video content. The
proposed approach interpolates individual word timings based on
each word’s position in the subtitle entry and the start and end
time of the entry. The authors also consider the use of phonetic
models and semantic markup to dynamically re-block subtitles as
a response to user interaction. Responsive subtitles are then
formatted and displayed appropriately for different devices while
respecting the requirements and preferences of the viewer. Our
work is related to these efforts, but instead we focus on a different
core technology and application domain.

Liu and Wang [16] propose a stroke-like edge detection method
based on contours to extract captions that are hard-coded in
videos. Instead of regarding each video frame as an independent
image, the authors demonstrate that the use of inter-frame
information can improve the accuracy of caption localization and
segmentation. Our work differs not only in the use of technology,
but also in the underlying research problem, that in our case is
automatically fixing the synchronization of subtitles entries
encoded in an independent subtitle document; so that viewers can
still obtain a satisfactory watching experience.

Fererico and Furini [8] propose a caption alignment mechanism
that exploits common off-the-shelf automatic speech recognition
(ASR) applications to produce time-coded transcripts. Their
approach does not require human transcriptions or special
dedicated software. They introduce a unique audio markup into
the audio stream before passing it to an ASR application. By
knowing the temporal locations of the inserted audio markups, the
mechanism can automatically transform the plain transcript
produced by the ASR application into a time-coded transcript.
Similarly, the video-sharing service YouTube™ uses ASR
technology to automatically generate, synchronize and translate
captions for videos users upload. In a typical (automated)
subtitling process, the original speech is first translated fully into
the target language and then the target translation is compressed to
optimize the length requirements. One of the techniques employed
in the text compression phase is to replace a target language word
in the original translation with a shorter synonym of it, thus
reducing the character length of the subtitle [9]. Although our
work shares the same goal for having subtitles aligned with
audiovisual content, we address a different research challenge that
is adjusting the synchronization of potential subtitle documents
with displaced timestamps.

Tiedemann [19] addresses the particular problem of synchronizing
movie subtitles to improve alignment quality when building a
parallel corpus out of translated subtitles. In the proposed
approach, anchor points are identified based on cognate filters,
which use string similarity measures and some heuristics for
selecting synchronization. Complementary, the author proposes a
dictionary-based approach using automatic word alignment and
shows an improvement in alignment quality even for related
languages compared to the cognate-based approach. In the context
of our work, one could perhaps use a similar approach to adjust

the temporal offset of misaligned subtitles. But for that, it would
be necessary to know the reference subtitle document that
perfectly synchronizes with the base audiovisual content at
playback time; what takes us back to ground zero.

From a more document engineering perspective, Concolato et al.
[6] discuss the synchronized playback of live video and subtitle
content using HTTP (Hypertext Transfer Protocol) streaming
technologies such as MPEG Dynamic Adaptive Streaming over
HTTP (DASH). Furthermore, Guimarães et al. [10] describe a set
of temporal transformations for multimedia documents that allow
users to create and share personalized timed-text comments on
third party videos; whereas Fagá Jr. et al. [7] present a vocabulary
proposal for third-party applications that allow users to add more
generic multimedia annotations to user-generated video content.
Most closely related to our work, Bulterman et al. [3] survey
many open and proprietary formats for encoding subtitles. Based
on a careful analysis, the authors describe a timed-text format that
balances the need for style formatting with the requirement for
more structured representation that can be easily parsed and
scheduled at runtime. Our work builds on these previous findings;
however, we go a step further by proposing a framework capable
of adjusting the synchronization of tens (or even hundreds) of
subtitle documents with displaced timestamps.

Regarding applications, some popular media players offer users a
mean to download SRT documents automatically once the base
audiovisual content is loaded. For instance, VLC can use an
extension called VLSub11 to search online for the corresponding
subtitle document using two different approaches. In the first, the
extension uses the media file name to query a remote subtitle
database. If there is a match, the corresponding subtitle document
is automatically downloaded and presented alongside the
audiovisual content. In the second approach, VLSub computes a
hash (checksum) of the media file and uses the resulting hash to
query the remote subtitle database. Again, if there is a match, the
player automatically downloads and displays the corresponding
subtitle document. In both cases, the synchronization of subtitle
entries might still appear misplaced during playback because: (1)
multiple versions of subtitle documents may have the same file
name; (2) the based audiovisual content no longer has its original
file name due to name mangling or to renaming; or (3) changes to
the original encoding settings, such as exporting an original file in
H.264 format to a QuickTime .MOV format, will alter the hash of
the base media file.

In addition, some media players also allow users to delay or speed
up the presentation of subtitle entries during playback, so that
users can try to fix synchronization misalignment interactively.
Unfortunately, this workaround might require a lot of iterations
and yet does not solve the problem once and for all. In this work,
we envision a less intrusive mechanism for fixing subtitle
synchronization problems without the viewer being even aware
that such issues exist. As we demonstrated in the previous
sections, this becomes possible through the extraction of audio
fingerprints, which is not likely to change drastically when the
original audio signal is re-encoded with different settings. Thus,
we allow compliant media players to automatically fix the subtitle
misalignment problem by considering the audio fingerprint
annotations as second-level synchronization anchors. Once such
audio fingerprints are identified in a subtitle document, the player

11 https://github.com/exebetche/vlsub

can then calculate and adjust the temporal offset of all the
subtitles entries accordingly.

7. DISCUSSION AND FINAL REMARKS
In this paper we formalized and evaluated a two-phase subtitle
synchronization framework that uses audio fingerprint annotations
extracted from the base audio signal as second-level
synchronization anchors. This approach allows compliant media
players to automatically fix (requirement i) common cases of
subtitle synchronization misalignment (requirement v) that
compromise users’ watching experience during playback. Our
experiments also show that the overhead introduced by our
framework is minimum in terms of document length (i.e., a few
extra bytes for the audio fingerprint annotations) and of CPU
time/cycles required to process fingerprints (requirement iv).

Because the duration of audio fingerprint annotations is equal to
zero, media players that do not implement the proposed alignment
mechanism simply do not show those subtitle entries on the screen
during playback. This way, we assure that the enriched subtitle
documents remains backward compliant and renders the same on
the screen as non-annotated subtitle documents (requirement iii).

As we have discussed in the introduction of this paper, we took
special care to ensure that the fingerprint representation stored in
the subtitle document is non-invertible to the original waveform
as a way to protect against the creation of derivative work – in this
case, of the original audio signal (requirement ii). We note,
however, that the definition of what can be considered an
extension of the original work may not even be a concern
depending on the license under which the original work is
published. That is often the case with the Creative Commons
license, popular among artists and independent producers. On the
other hand, an in-depth discussion on the legal issues involved in
the process of enriching subtitles of commercial movies or of
movies that do not feature support for certain languages deserves
a separate paper on its own.

One can still argue that while a few years ago the automatic
production of a video transcript was very hard to achieve,
currently, thanks to the advances in speech technologies, generic
off-the-shelf automatic speech recognition (ASR) applications
produce reasonable textual versions starting from audio streams.
Moreover, this process could perhaps be further improved by
considering cognitive computing technology (like IBM Watson in
Figure 1) and historic data from featured characters. Not to
mention that automatic generation of subtitle entries by services
like YouTube and by the reach of Netflix and Amazon Prime,
may lead to questions about the relevancy of a technique to
synchronize offline media. However, estimates are that in the next
5 years video traffic, including peer-to-peer, will be responsible
for 80% of all consumer Internet traffic [5]. And combined with
the facts that online databases of subtitle documents on the
Internet keep growing on a daily basis and that not all movies ever
produced are in the catalogs of the aforementioned services, our
work is yet relevant and timely.

As future work, we intend to deepen the investigation on the
causes of the discrepancies between subtitle documents and on
streaming delivery support, which would likely preclude the need
for downloading the entire video. These aspects will surely
require new enhancements and extensions to our current
framework. Moreover, we would like to conduct an experiment to
measure the sensitivity of users to the lack of subtitles
synchronization and another to assess our method on platforms
with limited resources such as small set-tops, tablets etc. This

information could be useful for the calculation of the optimized
position of anchor points in subtitle documents. We also
understand that subtitle formats other than the SRT could also
benefit from our work. Thus, a natural sequence to this study
would be to conduct a more extensive analysis on a larger corpus
of movies and of file formats.

8. REFERENCES
[1] Bartsch, M. A. and Wakefield, G. H. 2005. Audio

thumbnailing of popular music using chroma-based
representations. IEEE Transactions on Multimedia. 7, 1 (Feb.
2005), 96-104.
DOI=http://dx.doi.org/10.1109/TMM.2004.840597

[2] Brown, A., Jones, R., Crabb, M., Sandford, J., Brooks, M.,
Armstrong, M., and Jay, C. 2015. Dynamic Subtitles: The
User Experience. In Proceedings of the ACM International
Conference on Interactive Experiences for TV and Online
Video (TVX ‘15). ACM, New York, NY, USA, 103-112.
DOI=http://dx.doi.org/10.1145/2745197.2745204

[3] Bulterman, D. C. A., Jansen, J, Cesar, P., and Cruz-Lara, S.
2007. An efficient, streamable text format for multimedia
captions and subtitles. In Proceedings of the 2007 ACM
symposium on Document engineering (DocEng ‘07). ACM,
New York, NY, USA, 101-110.
DOI=http://dx.doi.org/10.1145/1284420.1284451

[4] Bulterman, D. C. A. and Rutledge, L. W. 2008. SMIL3.0 –
Flexible Multimedia for Web, Mobile Devices and DAISY
Talking Books. (2nd ed.). Springer Publishing Company,
Incorporated. ISBN: 978-3-540-78546-0

[5] Cisco. 2015. Cisco Visual Networking Index: Forecast and
Methodology, 2014-2019. White paper. Available at
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/ip-ngn-ip-next-generation-
network/white_paper_c11-481360.pdf

[6] Concolato, C. and Le Feuvre, J. 2013. Live HTTP streaming
of video and subtitles within a browser. In Proceedings of the
4th ACM Multimedia Systems Conference (MMSys ‘13).
ACM, New York, NY, USA, 146-150.
DOI=http://dx.doi.org/10.1145/2483977.2483997

[7] Fagá Jr., R., Motti, V. G., Cattelan, R. G., Teixeira, C. A. C.,
and Pimentel, M. G. C. 2010. A social approach to authoring
media annotations. In Proceedings of the 10th ACM
symposium on Document engineering (DocEng ‘10). ACM,
New York, NY, USA, 17-26.
DOI=http://dx.doi.org/10.1145/1860559.1860566

[8] Federico, M. and Furini, M. 2014. An automatic caption
alignment mechanism for off-the-shelf speech recognition
technologies. Multimedia Tools Appl. 72, 1 (Sep. 2014), 21-
40. DOI=http://dx.doi.org/10.1007/s11042-012-1318-3

[9] Glickman, O., Dagan, I., Keller, M., Bengio, S., and
Daelemans, W. 2006. Investigating lexical substitution
scoring for subtitle generation. In Proceedings of the Tenth
Conference on Computational Natural Language Learning
(CoNLL-X ‘06). Association for Computational Linguistics,
Stroudsburg, PA, USA, 45-52.

[10] Guimarães, R. L., Cesar, P., and Bulterman, D. C. A. 2010.
Creating and sharing personalized time-based annotations of
videos on the web. In Proceedings of the 10th ACM
symposium on Document engineering (DocEng ‘10). ACM,

New York, NY, USA, 27-36.
DOI=http://dx.doi.org/10.1145/1860559.1860567

[11] Hong, R., Wang, M. Yuan, X., Xu, M. Jiang, J., Yan, S., and
Chua, T. 2011. Video accessibility enhancement for hearing-
impaired users. ACM Trans. Multimedia Comput. Commun.
Appl. 7S, 1, Article 24 (Nov. 2011), 19 pages.
DOI=http://dx.doi.org/10.1145/2037676.2037681

[12] Hughes, C. J., Armstrong, M., Jones, R., and Crabb, M.
2015. Responsive design for personalised subtitles. In
Proceedings of the 12th Web for All Conference (W4A ‘15).
ACM, New York, NY, USA, Article 8, 4 pages.
DOI=http://dx.doi.org/10.1145/2745555.2746650

[13] Kovacs, G. and Miller, R. C. 2014. Smart subtitles for
vocabulary learning. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI
‘14). ACM, New York, NY, USA, 853-862.
DOI=http://dx.doi.org/10.1145/2556288.2557256

[14] Kruger, J. L., Hefer, E., and Matthew, G. 2013. Measuring
the impact of subtitles on cognitive load: eye tracking and
dynamic audiovisual texts. In Proceedings of the 2013
Conference on Eye Tracking South Africa (ETSA ‘13).
ACM, New York, NY, USA, 62-66.
DOI=http://dx.doi.org/10.1145/2509315.2509331

[15] Kushalnagar, R. S., Lasecki, W. S., and Bigham, J. P. 2013.
Captions versus transcripts for online video content. In
Proceedings of the 10th International Cross-Disciplinary
Conference on Web Accessibility (W4A ‘13). ACM, New
York, NY, USA, Article 32, 4 pages.
DOI=http://dx.doi.org/10.1145/2461121.2461142

[16] Liu, X. and Wang, W. Robustly extracting captions in videos
based on stroke-like edges and spatio-temporal analysis.

IEEE Transactions on Multimedia. 14, 2 (Apr. 2012), 482–
489. DOI=http://dx.doi.org/10.1109/TMM.2011.2177646

[17] Rooney, K. 2014. The Impact of Keyword Caption Ratio on
Foreign Language Listening Comprehension. International
Journal of Computer-Assisted Language Learning and
Teaching. 4, 2 (Apr. 2014), 11-28.
DOI=http://dx.doi.org/10.4018/ijcallt.2014040102

[18] Shimogori, N., Ikeda, T. and Tsuboi, S. 2010. Automatically
generated captions: will they help non-native speakers
communicate in english?. In Proceedings of the 3rd
international conference on Intercultural collaboration
(ICIC ‘10). ACM, New York, NY, USA, 79-86.
DOI=http://dx.doi.org/10.1145/1841853.1841865

[19] Tiedemann, J. 2008. Synchronizing translated movie
subtitles. In Proceedings of the 6th International Conference
on Language Resources and Evaluation (LREC ‘08), 5
pages.

[20] Villa Real, L. C., Guimarães, R. L., and Avegliano, P. 2015.
Dynamic Adjustment of Subtitles Using Audio Fingerprints.
In Proceedings of the 23rd ACM international conference on
Multimedia (MM ‘15). ACM, New York, NY, USA, 975-
978. DOI=http://dx.doi.org/10.1145/2733373.2806378

[21] Wang, F., Nagano, H., Kashino, K., and Igarashi, T. 2015.
Visualizing video sounds with sound word animation. In
Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME ‘15). 1-6.
DOI=http://dx.doi.org/10.1109/ICME.2015.7177422

