
Large-scale 3D geospatial processing made possible
Lucas C. Villa Real
lucasvr@br.ibm.com

IBM Research

Bruno Silva
sbruno@br.ibm.com

IBM Research

Dikran S Meliksetian
dikran_meliksetian@us.ibm.com

IBM

Kaique Sacchi
sacchikaique@gmail.com

University of Sao Paulo, IBM Research

Abstract
Several industries rely on accurate and efficient processing of 3D
spatial queries over increasingly large datasets for decision op-
timization and exploration purposes. Examples include clinical
diagnosis supported by 3D imaging of human tissues, numerical
simulation of aerodynamics during the design of aircraft and ve-
hicles, and the search for profitable deposits of minerals, oil and
gas guided by 3D maps extrapolated from dense collections of rock
samples. Despite the clear demand for spatial data processing in 3D
space, existing systems supporting these organizations are scarce
and scale poorlywith data volume. This paper presents a GPU-based
acceleration engine for SQL database management systems that
can serve spatial queries orders of magnitude faster than solutions
based on traditional software stacks.

CCS Concepts • Information systems → DBMS engine ar-
chitectures;Geographic information systems; Search engine
architectures and scalability; •Hardware→Hardware accel-
erators;
ACM Reference Format:
Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, and Kaique Sacchi.
2019. Large-scale 3D geospatial processing made possible. In Proceedings of
27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (SIGSPATIAL ’19). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3347146.3359351

1 Introduction
Database management systems play an important role in today’s
software architectures. They allow services to grow at scale and
help users gain insights through the exploration of relations in large
collections of structured, semi-structured and unstructured data.
And, with a continuous demand for efficient database services, new
implementations continue to arrive, exploring various methods
of data storage and retrieval, hence pushing forward the limits of
current systems [4, 31, 32, 37].

Several database systems include support for querying spatial
data through custom data types and specialized predicate functions
like intersection and distance tests between designated geometries
– a vital feature for geo services such as navigation and mapping.
Given the economic impact of the geospatial industry, estimated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00
https://doi.org/10.1145/3347146.3359351

at more than USD 500 billion [8], and its effects in modern society,
providing high performance spatial systems is of common interest
to users and software providers alike.

Despite the clear demand for spatial data processing, the major-
ity of the platforms only operate in the 2D space: MySQL (with
MySQL Spatial Extension), IBM DB2 (with Spatial Extender), IBM
Informix, Microsoft SQL Server and RethinkDB are examples in
this realm. Relational databases supporting 3D geometrical entities
are limited to Oracle Database (with its Oracle Spatial extension)
and PostgreSQL (through the PostGIS extension). Regrettably, both
systems present poor scalability and fail to meet demands when
collections of large 3D objects are input [38]. As a consequence, the
application of 3D spatial analysis supported by relational database
management systems is limited to small datasets and meshes of
moderate size.

This paper presents an accelerator for spatial queries in the 3D
domain that improves the performance of spatial databases by sev-
eral orders of magnitude. Code-named Lumic-GIS, this accelerator
improves our previouswork [27] by (i) employing geometry caching
strategies, (ii) dynamically migrating geometries to GPU memory,
(iii) specializing its algorithms to handle different geometry types
efficiently, and (iv) scaling to several more CPU cores and GPU
cards. We also introduce in this paper a synthetic dataset generator
that we created to support our work. The tool creates realistic 3D
features seen in the mining domain, which we use as a case study,
easing the evaluation of spatial data processing platforms without
depending on the availability of private data.

The sections of this paper are arranged as follows. We begin with
an overview of spatial data types seen in the mining domain and
the insights that geologists expect to gain from the analysis of such
data. Then, we present the modeling of our synthetic workload
generator. Sections 4 and 5 introduce, respectively, fundamental
aspects of two pillars of our work: PostGIS and PostgreSQL. Next,
Section 6 details the architecture of Lumic-GIS and its algorithms,
followed by a performance evaluation in Section 7. We present
related work in Section 8 and make closing remarks in Section 9.

2 Spatial Data in the Mining Domain
Visual insights and 3D geometrical modeling are key in the search
for new ore deposits in the mining industry. In a typical work-
flow, drilling rigs – machines designated to drill subsurface rocks –
extract several meter-long cylindrical core samples containing min-
erals from the mine. Chemical properties and minerals identified by
visual inspection and by laboratorial analysis of each cylinder are
recorded in a database system that also includes spatial coordinates
of the borehole and the drilling angle.

Domain-specific software that connect to this database system
are able to reconstruct the drills in 3D space [13] and aid geologists

https://doi.org/10.1145/3347146.3359351
https://doi.org/10.1145/3347146.3359351

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, and Kaique Sacchi

to shape the spatial distribution of different minerals underground.
Selected meshes, associated with zones of potential commercial
value, are discretized into a block model using geostatistics and
geological data gathered by the drilling process [24]. The output
of the model is a collection of blocks of the same size but with
different characteristics, as the ore density and grade that may be
found in that location of the mine. Those blocks are then aggregated
to represent entities such as geological faults and ore deposits.

Figure 1. A synthetically generated mine plane, seen from above,
featuring thousands of drill holes and complex geological shapes.

When properties related to 3D features are retrieved from the
database system and combined with spatial operators capable of
exploring them, geologists can submit complex queries to their
systems, such as “give me the average ore grade of all block models
in a zone no farther than 300 meters from this given drill hole”.
The problem is that even though there are off-the-shelf tools that
enable users to query their spatial data like that, their performance
do not allow users to explore data relationships in a timely fashion.
A typical mine can feature several thousands of such spatial objects,
as shown in Figure 1, and queries involving even small numbers of
objects may demand several hours to complete on such systems.

3 Synthetic Mine Generation
Real-life 3D mine models may contain several thousand geometric
representations of geological shapes, mineral blocks, drill holes,
and mine tunnels. The utilization of real-life 3D data is very im-
portant to conduct performance experiments and draw realistic
conclusions. However, the representation of these mines and the
underlying information may represent strategic data to a mining
company that cannot be shared. To overcome this issue, we cre-
ated a synthetic mine generator1 to enable scientists and mining
practitioners to create and share mining data by using a set of
configurable parameters. These parameters include:

1https://github.com/lucasvr/synthetic-mine-maker

• Maximum/minimum number of floors. A typical mine
has a set of underground floors. On each floor, walls are
drilled to learn information about the mineral compositions
of that zone of the mine. We use this parameter to create a
uniform probability distribution and generate the number
of floors in a given synthetic mine.

• Maximum/minimumnumber of geological shapes.As
in the previous parameter range, the maximum and mini-
mum number of geological shapes are employed to create a
uniform probability distribution and generate the total num-
ber of geological shapes for the whole mine. The number of
shapes determined are distributed along the floors using an
equal probability P = 1/(#f loors).

• Probability distribution for geological shapes dimen-
sions. By using the name and parameters for a theoreti-
cal probability distribution, users describe how geological
shapes’ dimensions (x ,y, and z) are generated. For instance,
dimension x may follow a normal distribution with a mean
value of 1000 units and a standard deviation of 50. Our
generator supports the distributions defined in Python’s
scipy.stats [15] package and the empirical probability dis-
tribution from the AstroML [36] package.

• Number and size of drill holes. The user defines the max-
imum and the minimum number of drill holes to create based
on an uniform distribution. The sizes of drill holes are de-
termined by a user-defined probability distribution function
and its respective parameters.

3.1 Mine Creation Procedure
The recipe for the creation of individual features of a synthetic
mine is given below. The number of features to be generated is
based on user-provided intervals.

Floors: most underground mines feature several floors connected
by elevators and access ramps. In synthetic scenarios with multiple
levels, the elevator is represented by a random cell in a shared x,y
coordinate that crosses all floors through the z axis. Next, on each
floor, other random cells are generated and linked in a dungeon
arrangement [12]. The connected cells are exported as a single
polyhedral surface object.

Drill holes: we assume that the machinery drilling the rocks is
placed next to the walls of the underground tunnels. Each drill hole
is mapped to a cell on the grid of the current floor. The starting
point of the drill is set to a random point on the surface of that cell’s
wall. The ending point is chosen by following the normal vector of
that surface (so that the drill faces outward) and tilting the angle of
that vector by a random value between [−15, 15] degrees to make
the drill look realistic.

Geological shapes: the point around which a geological shape is
constructed is set to the ending point of a randomly chosen drill
hole. That point, or seed, expands on all three axes, placing uni-
tary blocks along the visited paths, until the maximum growth size
has been reached. The expansion begins by placing Ni blocks in
the x direction. For every block generated on that axis, we let the
geometry expand itself in the y and z directions by Nj and Nk
blocks, respectively, for randomly chosen values of i , j, and k . The
growth continues until the initial direction reaches its limit. Once

Large-scale 3D geospatial processing made possible SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

the geometry has been assembled, the algorithm creates a shell
around the cubes facing the exterior side of the polygon. The final
geological shape is created by processing the convex hull of that
shell, which elliminates jagged edges and gives the object a more
natural appearance.

Blockmodels: blockmodels are produced by exporting the unitary
blocks that formed the original geological shape.

3.2 Mine Characterization
In the current version of the synthetic mine generator, we use
four parameters described by user-defined probability distribution
functions (geological shape dimensions x ,y, z, and drill hole sizes).
To characterize these parameters, we employed Fitter [7] to fit
theoretical probability distribution functions and AstroML [36] to
fit empirical probability distributions.

The Fitter package can identify the most probable theoretical
distribution function from which the mine data is generated among
a set of more than 80 distributions. In order to verify the quality of
the selected distribution, we use the Kolmogorov-Smirnov (KS) test
under the null hypothesis that the generated data and real data are
drawn from the same distribution. Depending on the characteristics
of the mine data, we may not find a theoretical probability distribu-
tion that describes the provided mine data. In this case, we employ
the empirical probability distribution from AstroML package.

4 Spatial Data Processing with PostGIS
PostGIS is a geospatial extension for PostgreSQL that serves as
a pillar of our work. It provides methods to store spatial data in
the database and to perform geometrical computation on that data.
Unlike other popular databases, PostGIS has rich support for 3D ge-
ometries, including polyhedral surfaces and triangulated irregular
network surfaces, and implements aggregation, proximity, inter-
section tests, and spatial indexes, among several other functions.

Many of PostGIS’ queries can be processed in two-phases thanks
to its support for geometry spatial indexes. This is the case with in-
tersection tests, in which the requested operation is first performed
with the minimum bounding boxes of the given geometries (which
typically runs very fast). If there is no collision between the bound-
ing boxes, then the second phase, which performs an exact compu-
tation on the actual geometries, can be safely skipped [21, 23].

Geometry blobs are saved in the main PostgreSQL storage area,
next to columns that hold native data types such as text and integers.
As long as a geometry fits in a single page size (commonly 8 kB),
PostgreSQL is able to keep it in that area. For all other cases, the
geometry is compressed, moved to a side-table, and the original
field value is replaced by a pointer that instructs PostgreSQL where
to find that data [34]. As we show in the performance results on
Section 7, such a mechanism poses an impact on queries, because
geometries have to be decompressed before processing begins. To
work around this limitation it is possible to change the storage
type of the geometry column to instruct PostgreSQL to move large
geometries to the side-table uncompressed. The side effect, naturally,
is a growth in the storage size for the database.

Besides being the de-facto GIS platform for PostgreSQL, PostGIS
does not make good use of the computational resources when it
comes to parallel processing of spatial queries. One of the problems

is that the query planner may choose to delegate the query to a sub-
optimal number of workers depending on how many rows might
be generated by the execution path. Tables holding geometries
of variable sizes may also lead to poor parallelism, as the cost of
processing each tuple can vary significantly.

It is possible to cause the planner to execute a query with multi-
ple workers by modifying the execution cost of the spatial function:
an expensive function has more chances of enabling parallel pro-
cessing than a cheap one. Still, that is not a guarantee that all
available processors will process elements of that query. Further,
such modifications may have an undesirable side-effect in function
inlining decisions (i.e., whether or not to replace a function call
with an incorporation of that function’s body directly in the query):
only inexpensive functions are candidates for inlining. This is a
special concern for functions defined as a combination of two or
more spatial operations (e.g., ST_3DIntersects(geom1, geom2),
defined as a spatial index scan on the bounding boxes followed by
an exact computation on the actual geometries): the query planner
may choose to “optimize” that function call (instead of inlining
it) by replacing the index scan with a sequential scan, effectively
causing exact computations to be carried out at all times [26].

The work we present in this paper aims at overcoming the afore-
mentioned scalability problems by employing methods of function
overloading and GPU kernels capable of distributing spatial work-
loads across thousands of dedicated processors. The next section
gives more details about the infrastructure behind the SQL language
that makes such improvements possible.

5 Foreign-Data Wrappers
The scope of the SQL language is published under ISO/IEC 9075.
That standard defines fundamental data structures, operations on
data stored in these structures, and minimum requirements of the
language. Other parts of the standard define extensions to SQL. One
example is SQL/MED, which adds support for managing external
data through foreign-data wrappers and datalink types [20] in a
federated architecture model.

Such an architecture allows a federated server to receive a SQL
query and decompose it into fragments that can be executed else-
where. The criteria for splitting the SQL query is chosen by the
optimizer according to the estimated consumption of resources.
Once the execution plan has been determined, fragments that oper-
ate on foreign tables are dispatched to the associated servers and
remotely processed. The query results generated at each server are
returned to the federated server, which merges them and forwards
the result to the application that submitted the original query [16].

Lumic-GIS, our platform for the acceleration of spatial queries
in the 3D domain, disguises as a PostgreSQL server that recognizes
a subset of the protocol that PostgreSQL uses to communicate
with foreign servers (implemented by its postgres_fdw module).
Since installations of PostgreSQL include that module by default
(including deployments of the database by cloud providers), users
are not required to, e.g., install a custom module in order to connect
an existing database to our accelerator. It suffices to configure a
foreign server on the database that points to the IP address and port
where Lumic-GIS listens for commands, and to declare the foreign
tables exported by Lumic-GIS so they can be accessed remotely.

Despite the selection, modification, and removal of rows over
remote tables, foreign-data wrappers allow the remote execution

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, and Kaique Sacchi

Query input

GPU(s)

PostgreSQL wire protocol decoder

OptionsAuth Parse BindDescribe

PostgreSQL statement parsers

Select FuncCall Expressions SortBy

Query context builder

Execute SimpleQuery

Query runner

RowDescription DataRow

Message encoder

Sorting filter

Closed polygons

ST_Volume

CUDA kernels

Spatial API

Poly:Poly Poly:Line Poly:Point

ST_3DIntersects

CUDA kernels

Poly:Poly Poly:Line Poly:Point Line:Line Point:Point

ST_3DDistance

CUDA kernels

Selection filters

StorageMain Memory

Cache reader

Cache maker

Remote query (libpq)

PostgreSQL

tableN
table3

table2
table1

Table retriever

ctxNctx2ctx1

…

Query context manager

PostgreSQL query string parser (libpg_query)

Message encoder

Query resultsACK/NACKMessage flow

Data flow

Figure 2. Architecture of our GPU-based accelerator. Query strings are parsed and converted into contexts that include information about
(a) the kernels to execute, (b) the input tables and rows to process, and (c) the computed results.

of function calls – as long as these functions are defined at both
the source and destination servers. This requirement exists so that
the federated server can compensate for any part of the query frag-
ment that could not be executed by a foreign server. The standard,
however, does not enforce both servers to have the same version
of a given function’s implementation. We exploit this fact in the
design of Lumic-GIS: by configuring postgres_fdw to indicate the
presence of a PostGIS API handler at the foreign server, query frag-
ments involving PostGIS function calls are dispatched to Lumic-GIS,
where they execute using hardware-accelerated algorithms. This
design allows users to run spatial queries without having to learn
details about the infrastructure supporting their execution.

Support for SQL/MED exists in other contemporary database
management systems besides PostgreSQL, such as IBM DB2 [5] and
MariaDB [19]. Although we chose PostgreSQL as the foundation
for our work, it should be possible to extend it to other engines
implementing SQL/MED and supporting spatial data types.

6 Speeding Up Spatial Databases
This section describes the software architecture of Lumic-GIS, in-
cluding the design decisions and algorithms that enable our ap-
proach to scale to several thousands of processing units on modern
GPU cards.

6.1 Software Architecture
The three components of Lumic-GIS, along with the flow of a spatial
query, are shown in Figure 3: the application (also called the client),
the PostgreSQL server, and the GPU-based query accelerator. Our
acceleration platform hosts geometries in memory at all times in
a format that can be readily ingested by the GPU kernels. Since

Lumic-GIS is not meant to be a full-fledged relational database
server, only two basic data types are allowed in its tables: geometry
(which holds a representation of the in-memory geometry objects)
and integers (which identifies them). Mappings between these tables
and PostgreSQL are declared through the foreign tables mechanism.

PostgreSQL GPU Accelerator

Table 1

id: integer
geom: geometry

id: integer

geom: geometry

Shadow Table 1

ST_Distance kernel

ST_Volume kernel

......

Table 2

id: integer
name: text

SELECT * FROM Table2 WHERE id = ANY(

 SELECT id FROM Table1 WHERE ST_Volume(geom)>10);

SELECT id FROM Table1

WHERE ST_Volume(geom) > 10

{id1, id2, id3, ...}

(1)

(2)

(4) (3)
(5)

Client Application

Figure 3. The three components of our solution. Query fragments
with spatial components are dispatched to our acceleration engine,
which processes them on high-performance GPU kernels.

On the sample query featured in Figure 3, the client requests a
selection of all tuples from Table 2 that have an associated geom-
etry with a volume greater than 10 (Step 1). PostgreSQL identifies a
reference to a foreign table (Table 1) and splits the original query
string in two, subsequently forwarding the spatial query fragment
to the GPU-based accelerator (Step 2). In Step 3, the volume kernel
executes over all shapes from Table 1. The results are returned

Large-scale 3D geospatial processing made possible SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

to PostgreSQL (Step 4), merged with the results from the other
fragment that executed locally, and forwarded to the client (Step 5).

A more detailed picture of the software architecture that runs
on top of the GPU hardware is shown in Figure 2. Geometries are
initially loaded into main memory from local storage by the cache
reader, or retrieved from a designated PostgreSQL server if the
local cache does not exist or is out of sync with that server. For each
SELECT query input to the system, the context builder stores the
required operations and the associated geometries required by that
query and stores them in a session context. Once the query runner
receives a first request to fetch results2, the actual computation
is performed by one or more CUDA kernels under the spatial
APIs. Finally, the query context is updated by the query context
manager and the query results are returned to the client.

Note that although we present only three CUDA kernels in the
paper, they can be used to compose more complex ones, such as
3D_MaxDistance, 3D_ClosestPoint, and testing if a geometry is
between two other ones. Our platform currently features some of
these, but they are not featured in Figure 2 due to space constraints.

Processing of spatial queries is computationally intensive. Lumic-
GIS uses a combination of OpenMP [3] and CUDA streams 3 to effi-
ciently exploit the computational resources available. On a server
configuration based on P processors and M GPU cards, Lumic-
GIS allocates S = P/M CUDA Streams per GPU, each of which is
associated with a unique OpenMP task during processing loops.

Differently from its predecessor, Lumic-GIS uses CUDA’s unified
memory management to allocate memory blobs and migrate data
from host to device (and vice-versa). Thanks to this mechanism,
GPU kernels can seamlessly access data from the CPU memory and
process geometries larger than the GPU memory. Also, because
memory allocations on the GPU cause a device-wide synchroniza-
tion, they are considered very expensive. When processing a spatial
query, Lumic-GIS identifies the largest geometries input to the
query and allocates buffers that large. These buffers are reused
for as long as possible throughout the lifespan of that operation.
Memory management also plays an important role in the handling
of new connections to the service. Whereas PostgreSQL spawns
processes to handle them, Lumic-GIS creates threads so that memory
buffers and partial results can be shared by similar queries. This
plays a vital role in the performance of our system.

6.2 GPU Algorithm: Volume
The volume of a watertight 3D triangular mesh is computed on
Lumic-GIS using the principle of the divergence theorem [11]. That
theorem states that the dot product of a point and its respective
normal for all faces are sufficient to evaluate the mesh volume.

As these attributes do not depend on information from another
faces of the same mesh, this problem can be said to be embarrass-
ingly parallel. The theorem is defined as∰

V
(∇ · F)dV =

∯
S
(F · n)dS, (1)

whereV denotes a volume inR3, S is the boundary of V (S = ∂V),
F is a continuously differentiable vector field (flux) defined on a
neighborhood of V , and n is the unit normal pointing outward S .

2Both full results and partial results (through server-side cursor) are supported.
3Queues of device work. The device schedules work from the streams when GPU
resources are free.

Thread	
1	

…

GPUs

…

Thread	
j	

Thread	
k	

Thread	
l	

Figure 4. Evaluation of the volume of a 3D triangle meshes using
GPUs. Each GPU thread computes the area and the normal of
each triangle, according to the divergence theorem. The results are
combined to compute the mesh volume. Other spatial operators in
Lumic-GIS use a similar approach in that each GPU thread performs
some basic computation on a solid face.

Let P be a polyhedron representing a database geometry given
by a set of triangles Ai , i = 0, ...,N − 1 with vertices (ui ,vi ,wi). As
all the faces are counter clockwise on Ai , the outer unit normal n
to P on each faceAi is ni = n̂i ÷ |n̂i | where n̂ = (vi −ui)× (wi −ui).
Therefore, if we assume a flux F = ®p/3 where ®p is a point on the
surface of P, then the volume (V) of P can be evaluated as

V =

∫
P
1dP =

∫
P
(∇ · ®p/3)dP =

1
3

∫
∂P

(®p · n)d(∂P)

=
1
3

N−1∑
i=0

∫
Ai
(ui · ni)dAi =

1
6

N−1∑
i=0

ui · n̂i ,

(2)

where we exploit the fact that the area ofAi is |n̂ |/2, and ®p ·ni is
constant over each Ai . Figure 4 presents the strategy to accelerate
the volume calculation of 3D polyhedral meshes. Differently from
a sequential CPU execution, GPU threads calculate ui · n̂i for each
face Ai in parallel. Depending on the number of faces of the solid,
its volume can be computed in a single GPU parallel execution. The
implementations of distance and intersection operators follow a
similar approach as each GPU thread performs a basic computation
on the solid’s face.

6.3 GPU Algorithm: 3D Distance
The current implementation of 3D distance supports the following
geometries: (i) line segment/line segment, (ii) line segment/poly-
hedral surface, and (iii) point/polyhedral surface. The following
explanation is related to the distance between a line segment and a
polyhedral surface; the other distance variations employ an anal-
ogous approach. We begin by findind the distance between each
triangular face of the polyhedron and the line segment. Similarly
to the volume calculation, the distance of each face and the line is
calculated in a parallel GPU thread. Then, the minimum distance is
returned to the user.

We employ the approach suggested by [9, 30] to evaluate the
distance between a triangle and a line segment. Assume a line
segment with end points P0 and P1 with parametric representation
L(t) = P0 + t ®d , 0 ≤ t ≤ 1 where ®d = P0 − P1. Let a triangle with
verticesV0,V1,V2 be represented asT (u,v) = V0 +u ®e0 +v ®e1 where
®e0 = V1−V0, ®e1 = V2−V0, 0 ≤ u,v ≤ 1, andu+v ≤ 1. The minimum
distance is computed by locating the values u,v, t so that T (u,v)

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, and Kaique Sacchi

is the triangle point closest to L(t). We find u,v, t that minimizes
the squared-distance Q(u,v, t) (Equation 3) from T to L to find the
minimum distance from L to each mesh triangle Ai .

Q(u,v, t) = |T (u,v) − L(t)|2 (3)

6.4 GPU Algorithm: 3D Intersection
The intersection supports the same geometries and utilizes the
same face decomposition approach as the 3D distance. Whenever
polyhedral meshes are involved in the computation, the operator
decomposes the intersection evaluation of each polyhedral face in a
GPU thread.We employ a less computationally-intensive evaluation
for intersection when compared to the distance operator.

For instance, for the line segment and polyhedral surface in-
tersection, each GPU thread intersects the line segment with the
plane containing the given triangular face, and then determines
whether or not the intersection point is within the triangle [9]. In
this case, we represent the triangle with vertices V0, V1, and V2 as
T (u,v,w) = uV0 + vV1 +wV2 where w = 1 − u − v , 0 ≤ u,v ≤ 1,
u+v ≤ 1. The triple (u,v,w) is known as barycentric coordinates of
T [30]. Assume also a line segment with points P0 and P1 and para-
metric representation L(t) = P0 + t ®d , 0 ≤ t ≤ 1 where ®d = P0 − P1.
Then the values for t ,u, and v should be


t
u
v

 =
1

(®d × e1) · (e0)


((P −V0) × e0) · e1
(®d × e1) · (P −V0)

((P −V0) × e0) · ®d

 , (4)

where e0 = V1 −V0 and e1 = V2 −V0. If t , u, and v respect the
aforementioned contraints, then L intersects T .

6.5 Precision Concerns
Although the 3D intersection equations are correct from the math-
ematical perspective, their execution on computers requires the
utilization of floating point numbers, which may lead to approxima-
tion issues for very big or small numbers. Therefore, to check t , u,
and v constraints from Equation 4, Lumic-GIS utilizes an ϵ epsilon
constant to overcome precision pitfalls. For instance, to compare a
given number a to 1, we use |a − 1| < ϵ instead of a == 1.

If we adopt a very small ϵ value, we may have some false nega-
tives intersection results. On the other hand, for relatively large ϵ ,
false positives will occur more often. Figure 5 presents a possible
precision problem in intersection calculation. Depending on the
value of ϵ , if it is too low, the intersection may return false as the
intersection occurs right on the borders of mesh triangles. This
value is configurable; it is up to the user to decide which potential
false conclusion has a greater impact on her application.

Lumic-GIS utilizes 3D intersection to check whether or not a
point P is within an object B. We employ the crossing number
method [10] which counts the number of intersections between an
infinite ray starting from P and the surface of B. If the number of
intersections is odd then P is inside B, otherwise, P is outside B.
Sometimes the crossing number method fails to detect points inside
or outside closed surfaces as infinite rays pass close to mesh trian-
gles edges and the number of intersections is wrongly evaluated
(e.g., Figure 5).

To overcome this issue, we extract two opposite rays R1 and
R2 from P and count the number of intersections with B. There
should be an odd number of intersections for both R1 and R2 with

Figure 5. Possible intersection problem. For intersections tests
very close to the borders of a geometry, an ϵ constant is required
to overcome potential precision issues.

B to assume P is inside B. As the probability of having R1 and
R2 passing through triangles edges like in Figure 5 is very low,
we reduce drastically the chances of having misleading inclusion
conclusions.

7 Performance Evaluation
7.1 Runtime Environment
Computing environment: all experiments were conducted on a
bare metal machine with 32 Intel E5-2620 v4 processors, 768 GB
of memory, 1.2 TB of SSD storage, and two NVIDIA Tesla V100
GPU cards. The software stack was based on the most recent devel-
opment snapshots of PostgreSQL (version 12 beta1) and PostGIS
(3.0.0 alpha1). The GPU kernels were built with the CUDA compiler
version 10.0.130 and the host code with GCC 7.3.1. The PostgreSQL
server and Lumic-GIS were hosted on that same machine.

Database setup: PostGIS spatial functions had their cost set to
100,000 to force parallel plans to be generated. The number of max-
imum parallel workers and the limit on parallel workers per gather
were adapted according to the configuration being tested. We also
configured the cost of non-sequentially fetched disk pages to 1 and
improved the cache size to 50 GB.

Dataset: we generated a synthetic dataset 4 featuring 7,846 lines
(representing complete drill holes) and 228,772 smaller line seg-
ments reflecting different intervals of these drill holes. The dataset
also includes 71 polyhedral surfaces (geological shapes) and 78,051
blocks (block model). Because the number of patches (faces) of
the geological shapes used as input to our benchmarks is variable,
performance gains are non-linear as the number of geometries pro-
cessed grows.

Queries: to evaluate the scalability of our GPU-based accelerator,
the shapes were separated in groups of 10, 20, 30, 40, 50, 60, and 71
(all). Next, we ran spatial queries frequently performed by geolo-
gists: filtering drill holes based on their distance to profitable areas
of a mine and other objects, and retrieving information from drill
holes that intersect with certain objects of interest (such as geolog-
ical shapes). All spatial functions are entered as WHERE clauses so
that they can be properly forwarded through Postgres-FDW to the
GPU accelerator. The queries are:

4 http://lucasvr.gobolinux.org/publications/2019-SIGSPATIAL-Dataset.zip

Large-scale 3D geospatial processing made possible SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

1. 3DDistance (lines× shapes): executes the ST_3DDistance
predicate over the geological shapes and all 7,846 drill holes;

2. 3D Distance (lines × lines): computes the distance be-
tween the 7,846 drill holes and the 228,772 drill hole intervals;

3. 3DDistance (shapes× shapes): runs ST_3DDistance over
selected geological shapes;

4. 3D Intersection (shapes × lines): computes the intersec-
tion between the same set of objects as above.

Speedup observed with the volume operator is the same as pre-
sented in our previous paper [27].

Measurement: we present the query time reported by the psql
utility that ships with the PostgreSQL distribution. That measure-
ment includes the time to retrieve geometries from the backing
storage, the kernel execution times, and the time to assemble and
send the reply back to the application. That is a fair measurement,
as it reflects the total times that users have to wait when querying
their data.

7.2 3D Distance (lines × shapes)
Unlike an intersection evaluation, processing of 3D distance queries
does not benefit from spatial indexes: every pair of geometries needs
to be processed and their distance have to be evaluated against any
query filters before the results are sent back to the application. In
this scenario, the difference between an off-the-shelf GIS system
and a high-performance spatial engine is evident, as Figure 6 shows.

The largest set computed in this experiment involves the eval-
uation of the distance over 557,066 pairs of geometries. That is a
relatively small number; geologists often run queries that result in
several million computations. Yet, we observe that PostGIS, in its
simplest configuration, takes 2h20min to compute and assemble
the results. In the best case scenario, PostGIS is able to process
the heaviest query in 51 minutes. Our GPU-accelerated platform,
on the other hand, processes the same query in 11 seconds in its
simplest configuration and in 7 seconds when two GPU cards are
used. A graphical depiction of the query times with different GPU
configurations on Lumic-GIS is shown in Figure 7.

On the executions with PostGIS, it is possible to see that the
performance with 8 CPUs is close to that of 4 GPUs. This happens
because PostgreSQL planned and launched 5 workers only,
even though the platform’s 32 processors were idle at the time
of the query planning. PostgreSQL arrived at the same plan even
when requested to allocate 32 workers.

With Lumic-GIS, one can notice an erratic pattern with the con-
figuration based on 2 GPUs and 32 Streams: query times are not
consistent, as the high standard deviation markers show. The rea-
son for this behavior is that this configuration leads to the use of 64
OpenMP threads, which exceeds the number of processors available
on that platform. The performance instability comes from the oper-
ating system’s task scheduling overhead. The best configuration
comes with 2 GPUs and 16 Streams, which maps to an optimal
number of 32 OpenMP threads and that leads to an improvement
of more than 1300 times over PostGIS.

7.3 3D Distance (lines × lines)
Querying the distance between two line segments is often per-
formed as a way to identify drill holes that are next to a drilled seg-
ment rich in minerals of interest. Moreover, because line geometries

10 20 30 40 50 60 70
Number of geometries processed

100

101

102

103

104

Di
st

an
ce

 c
al

cu
la

tio
n

tim
e

(s
ec

on
ds

)

Processing cost of 3D Distance (lines x shapes)

PostGIS: 1 CPU
PostGIS: 2 CPUs
PostGIS: 4 CPUs
PostGIS: 8 CPUs
Lumic-GIS: 1 GPU, 1 Stream
Lumic-GIS: 2 GPUs, 16 Streams

Figure 6. 3D distance query times with different number of geologi-
cal shapes, shown in logarithmic scale. Our GPU-based acceleration
engine improves over PostGIS by more than 1300×.

10 20 30 40 50 60 70
Number of geometries processed

0

2

4

6

8

10

Di
st

an
ce

 c
al

cu
la

tio
n

tim
e

(s
ec

on
ds

)
The effect of GPU configurations on 3D Distance (lines x shapes)

Lumic-GIS: 1 GPU, 1 Stream
Lumic-GIS: 1 GPU, 16 Streams
Lumic-GIS: 1 GPU, 32 Streams
Lumic-GIS: 2 GPUs, 1 Stream
Lumic-GIS: 2 GPUs, 16 Streams
Lumic-GIS: 2 GPUs, 32 Streams

Figure 7. Impact of different GPU settings on 3D distance query
times, shown in linear scale.

are less expensive to process than a collection of triangular meshes,
some software resort to geometry simplification, collapsing trian-
gles into lines for faster processing through approximation [28].

We picked the most interesting Lumic-GIS configurations from
the previous test for this one. The results, presented in Table 1, show
a lack of variation in execution times with PostGIS. The reason,
observed in the query plan, is that PostgreSQL uses parallel workers
to scan the drill holes tables, and joins the results with a call to
ST_3DDistance – which runs on a single processor, despite being
the dominant element in the query. The best recorded speedup of
our GPU-based accelerator over PostGIS is of 61×.

7.4 3D Distance (shapes × shapes)
For this test, we hand-picked pairs of geometries with different
numbers of triangles to explore the cost of processing their distance

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, and Kaique Sacchi

Configuration Query Time (sec)
PostGIS, 8 CPUs 718.90 ± 0.26
PostGIS, 4 CPUs 721.24 ± 2.24
PostGIS, 2 CPUs 721.31 ± 1.50
PostGIS, 1 CPU 719.14 ± 0.39

Lumic-GIS, 1 GPU / 1 Stream 13.91 ± 0.19
Lumic-GIS, 1 GPU / 32 Streams 13.56 ± 0.44
Lumic-GIS, 2 GPUs / 16 Streams 11.83 ± 0.23

Table 1. 3D Distance between pairs of lines

#Triangles Query time
Shape 1 Shape 2 PostGIS Lumic-GIS Speedup

1,936 2,270 9.2 0.05 159×
10,447 10,656 232 ± 1 0.45 515×
18,596 21,785 852 ± 20 1.44 ± 0.01 591×
49,052 51,095 5,212 ± 82 8.80 ± 0.24 592×
150,571 230,681 72,187 ± 451 123 ± 0.24 582×
Table 2. 3D Distance between two different geological shapes

in the 3D domain. Since PostGIS’ algorithms are not parallel (it
is PostgreSQL that potentially spawns several workers to handle
different geometries from the input), executing this query with 1, 2,
4, or 32 processors does not change its processing time. We compare
PostGIS with an instance of Lumic-GIS running on a single GPU
card and with 32 CUDA threads. The results are shown on Table 2.

Even though our dataset features geometries holding as many as
230,000 triangles, it is unfeasible to compute the distance between
large shapes on PostGIS. As observed in the last row of the results
table, processing the two largest geometries of our dataset takes
more than 20 hours on PostGIS, versus 2 minutes on Lumic-GIS.

7.5 3D Intersection (lines × shapes)
When evaluating the intersection between a pair of geometries,
most GIS systems employ a two-phase algorithm. In the first, they
check if the minimum bounding box of the two geometries inter-
sect. If they do, then the second phase performs a full intersection
computation on the actual geometries. Both PostGIS and Lumic-GIS
employ this technique, which lets them to work with significantly
smaller geometry sets.

The query times of the best configurations of Lumic-GIS and
PostGIS are shown in Figure 8. Here, we see the effect of Post-
greSQL’s function inlining decisions (discussed in section 4): when
invoking ST_3DIntersects, a SQL wrapper around two spatial op-
erations, PostgreSQL generates query plans that involve just
a single worker. Consequently, a single CPU is used – which
explains the similarity between the two PostGIS instances shown.

The difference between the PostGIS and our GPU-based platform
is once again noticeable: Lumic-GIS performs 250 times better.

7.6 Compression Overhead on PostGIS
As presented in Section 4, PostGIS uses a side-table to store large
geometries whose binary representation, in bytes, exceeds a page
size. Since the binary data is stored in compressed form, there is
a run-time overhead to uncompress it prior to the computation of
spatial queries with that data.

10 20 30 40 50 60 70
Number of geometries processed

100

101

102

In
te

rs
ec

tio
n

ca
lcu

la
tio

n
tim

e
(s

ec
on

ds
)

Processing cost of 3D Intersection (lines x shapes)
PostGIS: 1 CPU
PostGIS: 8 CPUs
Lumic-GIS: 1 GPU, 1 Stream
Lumic-GIS: 2 GPUs, 16 Streams

Figure 8. 3D intersection query times, shown in logarithmic scale.
The observed speedup is of 250× over PostGIS.

In this test, we configured PostgreSQL so that large geometries
from our dataset are stored uncompressed in that area. Next, we ran
the 3D distance tests once again (over lines and shapes) and cap-
tured the overheads associated with data preparation. The results
are shown in Figure 9 and on Table 3.

10 20 30 40 50 60 70
Number of geometries processed

103

104

Di
st

an
ce

 c
al

cu
la

tio
n

tim
e

(s
ec

on
ds

)

Overhead of geometry decompression on PostGIS

PostGIS compressed: 1 CPU
PostGIS uncompressed: 1 CPU
PostGIS compressed: 2 CPUs
PostGIS uncompressed: 2 CPUs
PostGIS compressed: 4 CPUs
PostGIS uncompressed: 4 CPUs
PostGIS compressed: 8 CPUs
PostGIS uncompressed: 8 CPUs

Figure 9. Overhead of geometry decompression of PostGIS, shown
in logarithmic scale. In its simplest (1 CPU) and best (8 CPUs)
configurations, the maximum decompression penalty is of 8% and
25%, respectively, as measured with the 3D Distance operator (lines
× shapes).

Even in the absence of overheads associated with geometry de-
compression, the query times with PostGIS are significantly larger
thanwhat can be achieved with our GPU-based platform. In the best
case, when processing 20 geological shapes, Lumic-GIS performs
1270× faster than PostGIS with a single CPU on a decompressed
side-table. In its worse performance gains, Lumic-GIS processes 30
geological shapes 690× faster than PostGIS with the same setup.

Large-scale 3D geospatial processing made possible SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

Shapes CPUs Compressed Uncompressed Overhead
10 1 668 sec 624 sec 7.1%
20 1 2,009 sec 1,966 sec 2.1%
30 1 2,869 sec 2,642 sec 8.6%
40 1 4,656 sec 4,549 sec 2.3%
50 1 5,635 sec 5,490 sec 2.6%
60 1 6,839 sec 6,718 sec 1.8%
71 1 8,339 sec 8,164 sec 2.1%
10 8 258 sec 207 sec 24.6%
20 8 756 sec 615 sec 22.9%
30 8 1,083 sec 867 sec 24.9%
40 8 1,722 sec 1,445 sec 19.1%
50 8 2,121 sec 1,750 sec 21.1%
60 8 2,565 sec 2,124 sec 20.7%
71 8 3,125 sec 2,882 sec 8.4%

Table 3. PostgreSQL’s compression effects on PostGIS performance.
The Compressed column holds results for queries that retrieve ge-
ometries in a compressed format from the side-table, whereas Un-
compressed holds results for a setup in which geometries are saved
to that table in an uncompressed form.

7.7 Double-precision versus Single-precision
The engine of Lumic-GIS can be configured to work with single-
precision IEEE floating points as opposed to double-precision ones.
Despite known issues with the use of fewer bits for geometric
computation [29] (e.g., rounding errors, false positives and nega-
tives, imprecise numerical results), there are several applications
for which a tradeoff between speed and accuracy is acceptable, as
is being demonstrated by the field of approximate computing since
the last decade [6, 14].

10 20 30 40 50 60 70
Number of geometries processed

0

2

4

6

8

10

Di
st

an
ce

 c
al

cu
la

tio
n

tim
e

(s
ec

on
ds

)

Double-precision versus single-precision floating points on the GPU
Double precision: 1 GPU, 1 Stream
Double precision: 2 GPUs, 16 Streams
Single precision: 1 GPU, 1 Stream
Single precision: 2 GPUs, 16 Streams

Figure 10. Performance improvements of single-precision floating
points over double-precision on Lumic-GIS (shown in linear scale).

In this test we evaluate the difference in query times between
the two floating point modes by benchmarking the 3D distance
operation over lines and shapes. The results, shown in Figure 10,
indicate processing times up to 59% faster when single-precision
floats are used.

8 Related Work
Researchers have been looking into GPU acceleration for spatial
query processing since hardware began supporting programmable
vertex and fragment shaders. One of the first publications in this
area comes from [33], who uses OpenGL to compute hardware-
assisted intersection and distance tests of 2D geometries. The au-
thors explore point, line, and polygon rasterization properties of
OpenGL to guarantee accuracy in their hardware acceleration tech-
niques. Especially, the strategy for testing the intersection of two
2D polygons is quite simple: polygons A and B are rendered with
different colors C1 and C2 and, next, the framebuffer is searched
for overlapping pixels with color C1 +C2. If such pixels exist, the
two polygons intersect each other. Despite the slow times asso-
ciated with framebuffer scanning, the authors achieved speedup
of up to 4.8 times for intersection joins and up to 5.9 times for
within-distance joins using a single NVIDIA GeForce 4 card.

In [17], the authors present Hadoop-GIS 3D, a 3D spatial query
processing system built on top of Hadoop and programmed using
the MapReduce programming model. Geometries are stored on
Hadoop’s Distributed File System (HDFS) and spatially partitioned
into cuboids, which are then used for parallel computation of spatial
queries. Spatial indexes are able to cover the entire geometry (called
global subspace indexes and stored on HDFS as regular files that are
close in size to the HDFS block size) and to operate at a finer grain,
in which each cuboid has its own in-memory index that the plat-
form generates on the fly. Another index supported by Hadoop-GIS
3D enables indexing of complex geometries that demand accurate
geometrical computations. A data structure based on an R*-tree
stores the minimum bounding-box of each geometry and is used
to quickly prune cuboids that do not satisfy 3D spatial join query
conditions. The authors present a linear speedup on that kind of op-
eration in a cluster comprising five nodes with 124 cores. However,
there is no baseline comparison with another GIS platforms; even
though PostGIS can be configured to use the same spatial library
for 3D geometric computation as Hadoop-GIS 3D [22], the only
speedups reported are of the author’s own platform against itself
under different configurations.

In [18], a revamped version of Hadoop-GIS 3D named iSPEED
is presented. To achieve low latency, iSPEED maintains geometry
data in memory and uses a progressive compression for each 3D
object to have a minimal impact on memory footprint. The original
geometry data remains stored on HDFS as in the previous genera-
tion of the platform. This new platform incorporates support for
representing 3D data with multiple levels of detail so that users
can choose between accuracy or fast query results. Performance
results are compared against their previous work (Hadoop-GIS 3D),
which shows an improvement of up to 6.6 times for 3D spatial join
queries. The authors report a negligible cost of reading and parsing
indexes stored in main memory and an impact of 2% to decompress
geometries on-the-fly.

Many other studies on the acceleration of spatial operations
are found in the 2D domain. Aghajarian and Prasad [1] use GPU
hardware to improve the performance of grid-based spatial join
algorithms. The idea they propose is to use non-uniform grids
to remove segments of a geometry that do not satisfy the join
predicate. They do so by applying a minimal bounding box around
the extent of each geometry and, in case of overlapping bounding
boxes, partitioning their intersection area into equal-sized cells that

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Lucas C. Villa Real, Bruno Silva, Dikran S Meliksetian, and Kaique Sacchi

are used for finer-grained filtering. They report a speedup of 225%
over its predecessor GCMF [2] on spatial joins using a single-node,
dual GPU system and more than 800-fold speedup over a naïve
sequential implementation.

A different platform for efficient 2D spatial querying is presented
in [25]. Instead of using a traditional approach based on the MapRe-
duce paradigm or on relational databases, the authors propose a
solution based on MPI, a high performance computing message-
passing interface [35]. Dubbed MPI-Vector-IO, their work makes
MPI aware of 2D spatial data types and introduces reduction oper-
ators for spatial primitives, effectively allowing the embedding of
spatial data types within collective computation and communica-
tion. MPI-Vector-IO relies on parallel file systems (such as GPFS and
Lustre) to efficiently parse and partition geometry data into cells of
a local grid. MPI processes are given a subset of these cell-based
tasks to compute the query. The authors report I/O and parsing
improvements by one to two orders of magnitude, using up to 1152
CPU cores, over sequential operations on parallel file systems.

9 Conclusions
In several industries like mining, oil & gas, smart cities, and ad-
vertisement, the spatial location of entities plays a key role in the
decision-making process. Current geospatial databases present so-
lutions to process spatial queries such as distance and intersection
for those problems. However, depending on the dataset size, large
queries become infeasible as current platforms fail to return re-
sponses in a reasonable time. For several industries, it is not ac-
ceptable to wait several hours or days to get responses for a single
spatial query.

Our work fills that gap by bringing a portable GPU-based plat-
form to solve this issue and reducing the query time by several
orders of magnitude (e.g., speedups of 1300×). We made large spa-
tial queries feasible for several industries that had to limit their
exploration scope to reduce response waiting time. Our platform is
straightforward to use because no other language or skill is nec-
essary than plain SQL which is already a requirement for users of
spatial databases.

This paper also presented a synthetic generator of mine datasets
to support our system evaluation. That tool, along with the dataset
used in this study, has been made publicly available for the scientific
community for future and related work.

Acknowledgments
The authors would like to thank Mark A. Smith and the anonymous
referees for their detailed review and comments on this paper.

References
[1] Danial Aghajarian and Sushil K. Prasad. 2017. A Spatial Join Algorithm Based

on a Non-uniform Grid Technique over GPGPU. In SIGSPATIAL ’17. ACM, New
York, NY, USA, Article 56, 4 pages.

[2] Danial Aghajarian, Satish Puri, and Sushil Prasad. 2016. GCMF: An Efficient End-
to-end Spatial Join System over Large Polygonal Datasets on GPGPU Platform.
In SIGSPATIAL ’16. ACM, New York, NY, USA, Article 18, 10 pages.

[3] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. 2009. The Design of OpenMP Tasks. IEEE
Transactions on Parallel and Distributed Systems 20, 3 (March 2009), 404–418.

[4] Peter Baumann, Dimitar Misev, Vlad Merticariu, Bang Pham Huu, and Brennan
Bell. 2018. Rasdaman: Spatio-temporal Datacubes on Steroids. In SIGSPATIAL ’18.

ACM, New York, NY, USA, 604–607.
[5] M. J. Carey et al. 1995. Towards heterogeneous multimedia information systems:

the Garlic approach. In RIDE-DOM’95. 124–131.
[6] C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkataramani. 2018.

Exploiting approximate computing for deep learning acceleration. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE). 821–826.

[7] Thomas Cokelaer. 2014–. FITTER. https://github.com/cokelaer/fitter
[8] Anusuya Datta. 2016. Where is the money in geospatial industry?

https://geospatialworld.net/article/where-is-the-money (visited on Sep 8, 2019).
[9] D.H. Eberly. 2007. 3D Game Engine Design: A Practical Approach to Real-Time

Computer Graphics. Taylor & Francis.
[10] J.D. Foley, F.D. Van, A. Van Dam, S.K. Feiner, J.F. Hughes, J. Hughes, and E. Angel.

1996. Computer Graphics: Principles and Practice. Addison-Wesley.
[11] C. Gold. 2018. Spatial Context: An Introduction to Fundamental Computer Algo-

rithms for Spatial Analysis. CRC Press.
[12] Nathan Hilliard, John Salis, and Hala ELAarag. 2017. Algorithms for Procedural

Dungeon Generation. J. Comput. Sci. Coll. 33, 1 (Oct. 2017), 166–174.
[13] M Howson and EJ Sides. 1986. Borehole desurvey calculation. Computers &

Geosciences 12, 1 (1986), 97–104.
[14] Mohsen Imani, Max Masich, Daniel Peroni, Pushen Wang, and Tajana Rosing.

2018. CANNA: Neural Network Acceleration Using Configurable Approximation
on GPGPU. In ASPDAC ’18. IEEE Press, Piscataway, NJ, USA, 682–689.

[15] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open source
scientific tools for Python. http://www.scipy.org/

[16] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. 2002. Garlic: A New
Flavor of Federated Query Processing for DB2. In SIGMOD ’02. ACM, New York,
NY, USA, 524–532.

[17] Yanhui Liang, Hoang Vo, Ablimit Aji, Jun Kong, and Fusheng Wang. 2016. Scal-
able 3D Spatial Queries for Analytical Pathology Imaging with MapReduce. In
SIGSPATIAL ’16. ACM, New York, NY, USA, Article 52, 4 pages.

[18] Yanhui Liang, Hoang Vo, Jun Kong, and Fusheng Wang. 2017. iSPEED: An
Efficient In-Memory Based Spatial Query System for Large-Scale 3D Data with
Complex Structures. In SIGSPATIAL ’17. ACM, New York, NY, USA, 17:1–17:10.

[19] MariaDB. 2013. MariaDB CONNECT Storage Engine. Technical Report.
[20] Jim Melton, Jan Eike Michels, Vanja Josifovski, Krishna Kulkarni, and Peter

Schwarz. 2002. SQL/MED: A Status Report. SIGMOD Rec. 31, 3 (Sept. 2002), 9.
[21] Thanh Nguyen. 2009. Indexing PostGIS databases and spatial Query performance

evaluations. 5 (09 2009), 1–9.
[22] Oslandia. [n.d.]. SFCGAL. http://www.sfcgal.org (visited on May 22, 2019).
[23] Neelabh Pant. 2015. Performance comparison of spatial indexing structures for

different query types. The University of Texas at Arlington.
[24] Paulo Elias Carneiro Pereira et al. 2017. Geological modeling by an indicator

kriging approach applied to a limestone deposit in Indiara city - Goiás. REM -
International Engineering Journal 70 (09 2017), 331 – 337.

[25] Satish Puri, Anmol Paudel, and Sushil K. Prasad. 2018. MPI-Vector-IO: Parallel
I/O and Partitioning for Geospatial Vector Data. In ICPP 2018. ACM, New York,
NY, USA, Article 13, 11 pages.

[26] Paul Ramsey. [n.d.]. Patching Plain PostgreSQL for Parallel PostGIS Plans.
https://carto.com/blog/postgres-parallel (visited on May 22, 2019).

[27] Lucas C. Villa Real and Bruno Silva. 2018. Full Speed Ahead: 3D Spatial Database
Acceleration with GPUs. In ADMS 2018. 11–15.

[28] Jarek Rossignac. 1997. Simplification and Compression of 3D Scenes. In Euro-
graphics 1997 - Tutorials. Eurographics Association.

[29] Stefan Schirra. 2000. Robustness and Precision Issues in Geometric Computation.
597–632. https://doi.org/10.1016/B978-044482537-7/50015-2

[30] P. Schneider and D.H. Eberly. 2002. Geometric Tools for Computer Graphics.
Elsevier Science.

[31] ScyllaDB. 2018. Applying Control Theory to Create a Self-Optimizing Database: The
Technology Underpinnings of ScyllaDB’s Autonomous NoSQL Database. Technical
Report. https://scylladb.com/resources/whitepapers (visited on May 22, 2019).

[32] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The
Architecture of SciDB. In SSDBM’11. Springer-Verlag, Berlin, Heidelberg, 1–16.

[33] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. 2003. Hardware Acceler-
ation for Spatial Selections and Joins. In SIGMOD ’03. New York, NY, USA.

[34] PostgreSQL Development Team. [n.d.]. PostgreSQL Documentation - Data-
base Physical Storage - TOAST. https://www.postgresql.org/docs/11/storage-
toast.html (visited on May 22, 2019).

[35] CORPORATE The MPI Forum. 1993. MPI: A Message Passing Interface. In
Supercomputing ’93. ACM, New York, NY, USA, 878–883.

[36] J.T. Vanderplas, A.J. Connolly, Ž. Ivezić, and A. Gray. 2012. Introduction to
astroML: Machine learning for astrophysics. In Conference on Intelligent Data
Understanding (CIDU). 47–54.

[37] Ramon Antonio Rodriges Zalipynis. 2018. ChronosDB: Distributed, File Based,
Geospatial Array DBMS. VLDB 11, 10 (June 2018), 1247–1261.

[38] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. 2009. Spatial Queries Evaluation
with MapReduce. In 2009 Eighth International Conference on Grid and Cooperative
Computing. 287–292.

https://github.com/cokelaer/fitter
http://www.scipy.org/
https://doi.org/10.1016/B978-044482537-7/50015-2

	Abstract
	1 Introduction
	2 Spatial Data in the Mining Domain
	3 Synthetic Mine Generation
	3.1 Mine Creation Procedure
	3.2 Mine Characterization

	4 Spatial Data Processing with PostGIS
	5 Foreign-Data Wrappers
	6 Speeding Up Spatial Databases
	6.1 Software Architecture
	6.2 GPU Algorithm: Volume
	6.3 GPU Algorithm: 3D Distance
	6.4 GPU Algorithm: 3D Intersection
	6.5 Precision Concerns

	7 Performance Evaluation
	7.1 Runtime Environment
	7.2 3D Distance (lines shapes)
	7.3 3D Distance (lines lines)
	7.4 3D Distance (shapes shapes)
	7.5 3D Intersection (lines shapes)
	7.6 Compression Overhead on PostGIS
	7.7 Double-precision versus Single-precision

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

